


The Dredging Research Program (DRP) is a seven-year program of the US Army Corps of Engineers. 
DRP research is managed in these five technical areas: 

Area 1 Analysis of Dredged Material Placed in Open Water 

Area 2 Material Properties Related to Navigation and Dredging 

Area 3 Dredge Plant Equipment and Systems Processes 

Area 4 Vessel Positioning, Survey Controls, and Dredge Monitoring Systems 

Area 5 Management of Dredging Projects 

Destroy this report when no longer needed. Do not return 
it to the originator. 

The contents of this report are not to be used for 
advertising, publication, or promotional purposes. 
Citation of trade names does not constitute a” official 
endorsement or approval of the “se of such 

commercial products. 



US Armv Cows 

I b 
Dredging Research Program q!pggg@,! 7 ,:~ 

Report Summary l I 

of Engineers 
Waterways Experiment 
Station 

ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, 
and Estuaries; Report 1, Theory and Methodology of ADCIRG2DDI and 
ADCIRC-3DL (TR DRP-92-6) 

ISSUE: A unified and systematic methodol- 
ogy must be provided to use in the investiga- 
tion of the dispersive or nondispersive charac- 
teristics of a site proposed for the disposal of 
dredged material in open water as well as to 
analyze existing disposal sites. 

RESEARCH: ADCIRC (Advanced Thrce- 
Dimensional Circulation Model) was devel- 
oped as a part of the Dredging Research Pro- 
gram (DRP) as a means of generating a 
database of harmonic constituents for tidal ele- 
vation and current at discrete locations along 
the east, west, and Gulf of Mexico coasts and 
to utilize tropical and extratropical global 
boundary conditions to compute frequency- 
indexed storm surge hydrographs along the 
US coasts. The database is being developed 
to provide site-specific hydrodynamic bound- 
ary conditions for use in analyzing the long- 
term stability of existing or proposed dredged 
material disposal sites. 

SUMMARY: The report describes the the- 
ory, methodology, and verification of the fi- 
nite element numerical model ADCIRC. The 
model was developed to produce long numeri- 
cal simulations on the order of a year for very 
large computational domains: for example, 
the entire east coast of the United States. The 
model was designed for high computational 
efficiency and was tested extensively for both 
hydrodynamic accuracy and numerical stabil- 
ity. Results of the tests are included in the 
report. 
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SUMMARY 

This report describes the theory, methodology, and verification of the finite 
element numerical model ADCIRC, an ADvanced three-dimensional CIRCulation model 
developed for the specific purpose of generating long time periods of hydrodynamic 

circulation along shelves, coasts, and within estuaries. The interit of the model is to 
produce long numerical simulations (on the order of a year) for very large computational 
domains (for example the entire east coast of the US). Therefore, the model was 
designed for high computational e:&iency and was tested extensi,vely for both 
hydrodynamic accuracy and numerical stability. The results of these tes,ts are included 
in this report. 

The ADCIRC model was developed by the Dredging Research Program (a) to 
provide a means of generating a database of harmonic constituents for tidal elevation 
and current at discrete locations along the east, west, and Gulf of Mexico coasts, and 

(b) to utilize tropical and extratropical global boundary conditions to compute frequency 
indexed storm surge hydrographs along the US coasts. The database of storm and tidal 
surface elevation and current data is being developed to provide site-spec:ific 
hydrodynamic boundary conditions for use in analyzing the long-term sta,bility of 
existing or proposed dredge material disposal sites. 

The overall intent of the DRP work unit is to provide a unified a,nd systematic 
methodology for investigating the dispersive or nondispersive characteristics of a disposal 

site. These goals can be realized through the use of hydrodynamic, sediment transport, 
and bathymetry change models. The ADCIRC model provides the tidal-, and storm- 
related hydrodynamic forcings necessary for sitespecific site designation. 



PART 1: I:NTlLOII)UC’I’ION 

1. Iutcrest in dcvel0pin.g a more accurak technique for predic~ling sea surface 

elevation alld circulation in coastal areas has been spurred on by concerns rclsting to 

navigation, shoreline flooding, Ipollutant ksnsport, and sediment transport. A model 

Ior computing the: important fca.turcs of ckulation pat terns drivcm by Cdes, wind, 

atmospheric prcssurc gradients, and ocean currexts must be boat1 in scope and size. 

To simplify seswxd boundary conditions, yet include impori,a:nt flow rlctai’ls, the model 

must encompass large domains while providing ;a high degree of resolution in high- 

gradient regions as well as in ncarshore xeas. This means that the 1mode1 should 

allow for the simultaneous solution of flow in continc.:,nf.al shelf region::;,, coastal areas, 

and in cstuarinc :;ys tons. The m&l should solve l.:hc threw!--dirnc~n!;ic,ll;i.l conservation 

equations [t hcrel~y r~solvi~~g the vertical prol?le of horizontal veloc:ii,y] jlnstcad of the 

widely used dcpth..~irltcgratcd conservation equations. This is necessary since it is 

impossible to assume a relationship bctwc:en bottom stress and dcpthktvcraged velocity 

that is generally valid for stratified flows, Ekman layers, and wintX,--driven cixxulation 

in cncloscd or scxnkncloscd basins or in cases .whcre wave orbital vcloc:it,ics or 

s~uspcnded sediment conc:erltrstil:)n gradients are .t;ignifica.nt nea:r the bot.tom. 

Furthermore, it is inqxxsi ble to assume values for momentum dispersicu~, coefficients, 

which are inherent in dopth~~~ini,t!gra.tcld solut:ions, t1la.B a.re goncrally valid in complex 

flows. 

2. The rcquiroments of very large domaks, a high degree of horizontal 

resolution in portions of the dornai~~, and the resolution of rapidly varying vertical 

profiles of horizontal velocity place strenuour; demands on even the largest 

supercomputers. ‘I’hc goal in the development of AIXIRC ( A~Dv;mccd three 

dimensional C111Culation model) has ken to bring together algorithms Ithat are highly 

flexible, XCUl~iLtC, and extremely efficient. ‘I’hess:: issues are closcl,y inttxclated and 

have lx!en cmphasizcld in the selection of discretization techniques, T~I:! algorithms 

that comprise ADCIItC allow br an effective minimizalion in the rquired rmmber of 
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degrees of freedom for a desired level of accuracy, show good stiability characteristics, 

generate no spurious artificial modes, have minimal inherent artificial numerical 

damping, efficiently separate the partial differential equations into small systems of 

algebraic equations with time-independent matrices, and are capable of running months 

to years of simulation while providing detailed intra-tidal computations. 

3. The framework within which ADCIRC has been developed is a. coupled 

ext;ernal mode - internal mode approach. This technique has proven to ‘be successful 

in past three-dimensional models and can significantly reduce the cost of three- 

dimensional hydrostatic circulation computations. The governing equations and the 

basic concept behind mode splitting are discussed in detail in Part II. The external 

mode solution, which uses the well-known depth-integrated or shallow-water equations, 

is discussed in Part III. Key features of the external mode solution include the use of 

a generalized wave-continuity equation (GWCE) formulation and numerical 

discrctizations using the finite element (FE) method in space and the finite difference 

(FD) method in time. Results are presented using the external mode solution as a 

stand-alone, two-dimensional model on a quarter annular test case and the North 

Sea/English Channel system. Part IV focuses on the internal mode soluti.ori. During 

the development of ADCIRC, a novel technique was discovered that replaces velocity 

with shear stress as the dependent variable in the internal mode equations. The 

resulting direct stress solution [DSS] allows physically realistic boundary layers to be 

included explicitly in a three~limensional model. This formulation of the internal 

mode equations should be invaluable for modeling coastal and shelf circula,tion, in 

which the bottom and surface boundary layers comprise a significant portion of the 

water column, and for modeling processes that are critically dependent on boundary 

layer physics such as wave%urrent interaction, sediment transport, oil spill movement, 

ice floe movement, energy dissipation, physical-biological couplings, etc. ‘Thorough 

descriptions of the DSS formulation and testing are presented in Part IV. 

4. ADCIRC is being developed and implemented as a multi-level hierarchy of 

models. A ZDDI (two-dimensional, depth-integrated) option solves only the depth- 

integrated, external mode equations using parametric relationships for bottom friction 

and momentum dispersion. A 3DL (threedimensional, local) option uses horizontally 

decoupled internal mode equations to solve for the vertical profile of horizontal 

velocity and to evaluate bottom friction and momentum dispersion terms for the 

depth-integrated external mode solution. A 3DLB (three-dimensional, local, 

baroclinic) option includes baroclinic terms as a diagnost;ic feature. Finally, the 3D 

and 3DB options solve the complete internal mode equations for nonstratified and 
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stratified flows, respectively. At present ADCIRC-SDDI is full;y implemented and 

operational, ADCIRC-3DL is being tested, am1 other ADCIRC versions are under 

developmen~t. 

5. .ADCIRC achieves a high level of simulta.neous region~al/local modeling, 

accuracy, and efficiency. This performance is a consequence of the extreme grid 

flexibility, the optimized governing equation formulations, and the numerical algorithms 

used in ADCIRC. Together, these allow ADCIIRC to run with order of magnitude 

reductions fin the number of degrees of freedom and the computational costs of many 

presently existing circulation models. 

1.0 



PART II: GOVERNING EQUATIONS 

Thretiimensional Equations for Nearly Horizontal Plow in Cartesian Coordinates 

6. A survey of several recent review volumes (e.g., Heaps 1987; Nihoul and 

Jamart 1987; ASCE 1988a,b; Davies 1989) indicates that the turbulent incompressible 

Reynolds equations simplified using the Boussinesq approximation and the hydrostatic 

pressure approximation generally form the basis for stat,e-of-the-art numerical models 

of coastal/shelf circulation. Although these equations d,escribe fluid motion in three 

dimensions, because of the simplification of the vertical momentum equations, they are 

only correct for nearly horizontal flow (Koutitas 1987; Abbot 1990). Using a 

right-handed Cartesian coordinate system these equations can be written as 

(‘4 

(3) 

where 

f = 2nsin4 = Coriolis parameter 

g = acceleration of gravity 

P = tide generating potential 

v = molecular viscosity 

p(x~,y,z,t) = time-averaged pressure 

P(x,y,z,t) = density of water 

p0 = reference density of water 

t = time 

T = integration time scale for separating turbulent and time-averaged quantities 

u’u’ dt - combined viscous and turbulent Reynolds stress 

u’v’ dt - combined viscous and turbulent Reynolds stress 

11 



7zx(X,y,z,t) = v g - + JLwj dt - combined viscous and turbulent Reynol~ds stress 

7&,Y,Z,t) = L’ $4 - IfT fvfu/ dt - combined viscous and turbulent Reynolds stress 

Tyy(X,Y,Z,t) = v$-$J” v’v’ dt - combined viscous and turbulent Reynolds stress 

7ay(X>Y,Z>t) = +;f v’w’ dt - combined viscous and turbuknt Reynolds stress 
0 

4 = degrees latitude 

u(x,y,z,t), v(x,y,z,t), w(x,y,z,t) = time-averaged velocities in the x, y and z directions 

u’(x,y,z,t), v’(x,y,z,t), w’(x,y,z,t) = departures of the instantaneous turbulent 
velocities from the time-averaged velocities 

x, y = hormontal coordinate directions 

z = vertical coordinate direction 

R = angular speed of the Earth (7.29212x10-!’ rad/s) 

7. Using the vertical momentum equation, pressure can be el.iminated as a 

dependent variable from Equations 2 and 3, to give: 

g+u 
ilu au 

$+“i7y+yj- fv = - &[k + g< - I:‘] $. g”, - b, + m, (5) 

g+ug+v & 
g + waz 

+ fu I1 ~ ij& + gc - r + g(Z) - b, + my ] (6) 

where 

b,=@ po z I iwo) dz - baroclinic x - forcing 
z 

by=@ po 3 I ;wo) dz - baroclinic y - forcing 
7. 

((x,y,t) = free surface elevation relative to thle geoid 

~.&[~.+$YK] -h orlzontal momentum diffusion 

my = h[$ -t +] - horizontal momentum diffusion 

pS(x,y,t) - atmospheric pressure at the free surface 

8. The solution of Equations 1, 5, and 6 requires the following boundary 

conditions: 
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3. At the free surface, 

w=g+ug+“% (7) 

TY,.x = rsx, r7.y := rsy (8) 

where r&x,y,t) and r&x,y,t) are wind stresses applied at the water 
surface. 

b. At the bottom, 

u=O,v=O @ z=-h+z, (lob) 
where r&x,y,t) and +(x,y,t) are bottom stresses, uu(x,y,t) and 
vu(x,y,t) are near bottom velocities, k is a slip coefticient and z0 is 
the effective bottom roughness height (e.g., z,, = k,/30 where ks is the 
physical bottom roughness). The physically correct, no-slip condition, 
Equation lob, is often replaced by the slip condition? Equation lOa, to 
avoid the need to numerically resolve the sharp vertrcal gradients of u 
and v that exist near the bottom. A quadratic slip condition is 
obtained by setting 

k = C,\ (4-t- ~2)“’ (11) 
If the velocity profile is logarithmic between the elevation where III, 
and vu are computed, (--h+zr,), and the bottom, (-h+z,), C,r can be 
dcfincd rigorously as 

Cc1 = {; 1n[(z,,-h)/(z0-h)]}-2 (12) 
where IC is the van Karman constant. Often the quadrat,ic slip 
condition is repla.ced by a linear slip condition by setting; k equal to a 
constant. 

c. At land boundaries normal flux: is specified. Typically, this is zero for 
a solid boundary or nonzero for a river boundary. 

d. At open boundaries (either along the ocean or at rivers) lthe free 
surface elevation, ((x,y,t), is specified, a radiation bound,ary condition 
is used to allow waves to enter and propagate out of the domain 
(Davies and Fumes 1980; Reid 1990), or the discharge is specified, 

Threedimensional Equations for Nearly Horizontal Flow in IT Coordinates 

9. It is often useful to transform Equations I, 5 and 6 into a bottom and 

surface-following “# coordinate system. By this means, numerical solutions of the 

transformed equations maintain the same vertical resolution at each horizontal grid 

point, regardless of variations in depth (Davies 1985; Blumberg and Mellor 1987). In 

a general g-coordinate system (where 0 = a at the free surface and u q :: b at the 
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bottom): 

x .EX 

t, E t 

where 

H(x,y,t) E < + h - total water depth to the free surface 

h(x,y) - bathymetric depth rel,ative to the geoicl 

(The CJ subscript is used to denote variables in the new coordinate system.) 

(134 

(13b) 

(13c) 

(134 

10. Derivatives are converted to the gxoordinate system using the chain rule: 

(144 

(144 

11. The velocity component aligned in the cr direction is defined as 

12. The baroclinic forcings b,,, b,,, and the horizontal momentum diffusion 

nix,, mYn in the cr coordinate system become: 



(174 

(17b) 

13. Substituting Equations 13 - 17 into Equations 1, and 4 - 6, and 

rearranging terms gives the three-dimensional governing equations in the o-coordinate 

system. Dropping the CJ subscripts for notational convenience, the transformed 

equations are 

%+ 
&H+hH+hLO 

T+y &T- 

g+U au au 2 + “q + wz - fv == 

g+u g+Vg+W % -I- fu = 

%=-& 
14. The u equations use the same boundary conditions as the original 

equations with the exception that w,= 0 at the free surface and at the bottom, 

Vertically Integrated. Twodimensional Eauations for Nearly Horizontal Flow 

15. The three-dimensional equations can be integrated over the vertical to 

yield a set of twodimensional equations for free surface displacement and 

depth-averaged velocity. In conservative form these equations are: 

(18) 

(19) 

(20) 

(21) 

(22) 

au11 z-+ F + v - fVH := - H &[k + g(< - on)] 

15 



+ M, t- D, -t 13, + ;T ~~ 2~ 
PO (24) 

where 

LY = effective Earth elasticity factor (a = 0,,69) 

IS, z -- ‘b, dz 
I 

-- depth-integrated baroclinic fking 
-11 

I 

5 
II, E -- b, dz --. depth-integrated baroclinic forcing 

-I, 

c c 
I),,, E 

I 

t 
iiii dz, I),,, s Cii dz, D,, s 

I 
CC dz 

-h 1, -11 

v(x,y,t) - Newtonian equilibrium tide potential 

M, = &I’:$: dz + $$% d.z -- depth,-integ[atcd, horizo:ntal momentum diffusion 
-h 

< 

M, = & 
I 

?iY dz + 
.,, p0 

g-: 
I 

5.~ d.z - depth-integrated, horizontal momentum diffusion 
PO 

-h 

U(x,y,t) : ; ICI1 de - depth-,averaged horizontal velocity 
-11 

V(x,y,i,) : ; I(” dz - depth-averaged horizontal velocity 
-11 

ii(x,y,z,t) = II - ‘U - departure of horizontal velocity from depth.~-aver,aged velocity 

C(x,y,z,t) z v - v departure of horizontal velocity from depth---averaged velocity 

16. Ln non+onscrvative form, the vertically integrated m,omeni;um conservation 

equations are: 



17. The derivation of the Newtonian equilibrium tide potential, II, is presented 

by Reid (1990). A practical expression for q given by Reid is 

Tj(,i,$,t) = 1 Cjn fjn(to) IJj(d) cos[2tit-to)/Tjn + jX + q;rl(to)] (27) 

n,j 
where 

Cj,, = constant characterizing the amplitude of constituent n 01: species j (Table 1) 

fJll(t) = time-dependent nodal factor 

j == 0, 1, 2 - tidal species (j=O declinational, j=l diurnal, j=2 semidiurnal) 

Lo = 3 sin2(#) - I 

LL = sin(24) 

Lz = co@(d) 

X, 4 = degrees of longitude and latitude, respectively 

tu = reference time 

‘I’j,l = constant characterizing the period of constituent n of species j (Table I~) 

Sfil(t) - time-dependent astronomical argument 

Values for fjI1 and 8;) can be computed from tables (e.g., Schu,reman 1941) or using 

available harmonic analysis packages (e.g., Foreman 1977). 

18. The gradient of cull results in the effective tide-producing force. The 

factor (Y accounts for the reduction in the field of gravity due to the existence of 

small tidal deformations of the Ea.rth’s surface called Earth tides. The value 

cy := 0.69 is the ratio of the theoretical period of the Earth’s wobble deri,ved by Euler 

(assuming the Earth to be a perfectly rigid sphere) to the observed period of the 

Earth’s wobble (Reid 1990). (Therefore N is a global measure of the rigidity of the 

Earth. For reference, (Y = 1 would correspond to a perfectly rigid sphere.) (Y = 0.69 

has been used for modeling global ocean tides by investigators including Schwiderski 

(1980) and Bendershott (1981). 

19. Due to their computational efficiency, models based on the vertically 

integrated equations have been widely used for modeling coastal, shel~f, an~d even open 

ocean circulation (e.g., Leendertse 1967; Wang and Connor 1975; Spaulding 1984; 

Smith and Cheng 1987; Werner and Lynch 1987; Walters 1987; Vincent and Le 

Provost 1988; Westerink, Stolzenbach, and Connor 1989; Signell 1989). All of the 

physics contained in the original three-dimensional governing equations are embedded 
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Table 1 

Constants for the Principal Tidal Constituents /from Reicj1990) ~__ 

Species Constituent 
c 
In 

T 
solar days or hrs* -- 

0 Mf fortnightly lunar 0.941742 13.660791d 

M,” monthly lunar 0.922026 27.554553d 

S,, semiannual solar 0.01944,6 182.6:Zlld 

S, annual solar ** 365.2,597d 

1 K, luni-solar 0.141565 

0, principal lunar 0.100514 

PI priucipal solar 0.046843 

&I elliptical lunar 0.019256 

23.9344696h 

25.819341711 

24.0658902h 

26.8683566h 

2 Mz principal lurm 0.242334 12.4206012h 

Sz principal solar 0.112841 12.0000000h 

Nz elliptical lunar 0.046398 12.6583482h 

Kz luni-solar 0.030704 11.9672348h 

*One lunar day = 1.035050 solar days or 24.8412 solar hours 

**The annual solar tide is heavily dependent on seasonal heating and cooling of the 

ocean, as well as radiation pressure. 
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in the vertically integrated equations if the bottom stress and the momentum 

dispersion terms are specified correctly. Although more sophisticated approaches have 

been developed for specialized conditions (Lynch and Officer 1985; Nihoui and Djenidi 

198’7; Tee 1987; Poon 1988; Jenter and Madsen 1989), bottom stress is usually 

parameterized as a collinear function of the depth-averaged velocity, and momentum 

dispersion is either neglected or represented as a “diffusion-like” function of the 

de~pth-averaged velocity (Bedford 1984). 

20. Parameterized bottom stress relationships are typically quadratic in the 

depth-averaged velocity and of the form 

2.5 zz Cf (UZ + vzy TJ 
PO (284 

2.Y = Cf (UZ + VZ)1/2 v 
PO Pb) 

where Cr is computed using one of the following relationships: 

(294 

In Equation 29, & is the Darcy--Weisbach friction factor, C is the Chexy friction 

coefficient, and n is the Manning friction factor. 

21. The depth-integrated ‘lateral momentum diffusion terms are typically 

lumped together with the momentum dispersion terms into a standard isotropic and 

homogeneous eddy diffusion/dispersion model (Blumberg and Mellor 1987) 

Mx + Dx = Et? aZUH am 
2- + TT + 

a2VH 
Y m 1 

My + D, = E:: W’b) 

MD where Eh, IS a horizontal eddy diffusion/dispersion coefficient. Equation 30 is based 

directly on a molecular diffusion analogy as applied to depth-integrated flow. Kolar 

and Gray (1990) use a slightly simpler model that approximates Equation 30 as: 

MD a2uB 
Mx + Dx = Jhz 

C 
T+!?g!G+ 

x Y I 
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M, + D, == E:; 
! 
PVII i?‘VlI 
-a;;-r + -F 

I (3lb) 

whcrc l?zt is an eddy diffusion/dispersion cocfiticicnt that twill generally not be equal 

to g;. 

22. For ,flows with horizonta1l length sc;alcs .that are largte compared to t;he 

depth, M, and M, are negligible in the momentum balance in Equations 25 and 2G 

(~fllumberg and Mcllor 1987). I), and D, are simil,arly small when tthe ,velocity profile 

is nearly uniform over the vertical. In such fl~ows Eiy or 1l#i are either set .to zero 

or kept at a relatively small value lo provide stability to the numerical scheme. (The 

latter must be done wii,h considerable caution to ensure that the contributions of these 

terms in the momentum equations remain smalH. Otherwise, the model solutions will 

he artificially alt,crcd.) Conversely, when t,he vclocit~y profil~e varies ;st,rongly over the 

vertical, D, and I), may have a significant contribution to the momon,tum balance. 

2:). For tidal flows in relatively shallow, unstratified waters, tleI)th-inteL;ratcd 

computations that make use of the para.metcri:<atiorns given in Equations 28 - 31 

a.ppcar to work reasonably wc!ll (alt.hough detailed st,udies of tidal constitue,nt dynamics 

indicate that all of the flow physics are not captured in tirvo&mensi.onal simulations 

due to the form of t,he bottom friction term (Wcsterink, S,tolzcnbac’h, and 

Connor 1989)). Ilowevcr, in winddriven flows, stra.tified fl~ows, Ekman layers, or 

when wave orbital velocities or suspcndcd :sediment gradients are signilicant mar the 

bottom, the simple paramet,erixations for bottom friction and momcntnm dispe:rsion 

given above becornc entirely inadequate. Also, since the depth-averaged velocity may 

be very different from the actual velocity at a speci~fic elevation in the water column 

(particularly if flow reversal c~ccurs over the depth), the USA: of the depth-averaged 

velocity in a transport model (e.g., for sediment transport) may came considerable 

error in nrcdictcd 1,ransport patterns. Therefore, for many applications of pract,ical 

interest, a modcl~ based solely on the vertically integrated governing equations is not 

adequate. 

-Mode Splitting 

24. Unfo~rtunately, numerical solutions of the three-&mensional governing 

equations require substantially increased computer time and storage in comparison to 

solutions of the vertically integrated equations. To help minimize this cost, most 

threedimensional models use some type of mode-splitting scheme. Mode splitting is 

accomplished by solving the two-dimensional, vertically integrated, “external mode” 
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equations for the free surface displacement (a.nd sometimes the depth-averaged 

velocity). The external mode solutions are then used to force “internal mode” 

equations that account for the vertical propagation of momentum. The internal mode 

equations are solved for the vertical profile of velocity and the results used to 

compute ru,, nY, D,, and D, for subsequent external mode calculations. Internal 

mode equations have been generated by integrating the three-dimensional equations 

over discrete layers in the vertical and then subtracting the equations for adjacent 

layers (Simmons 1974,; Sheng and Lick 1980), by subtracting the external mode 

equations from the three-dimensional equations (Wang 1982; Sheng 1983; Davies 1985), 

by differentiating the threedimensional equations in the vertical direction (Tee 1979), 

or by using the three-dimensional equations themselves (Blumberg and Mellor 1987; 

Lynch and Werner 1991). (The internal mode equations and their solution are 

discussed in detail in Part IV of this report.) Mode splitting allows the free surface 

elevation to be evaluated with the computational efficiency of a vertically integrated 

model. This can be quite important since the allowable time step for this 

computation is often severely constrained by accuracy requirements or a Courant 

stability criterion. Since the internal mode calculations are free from surface gravity 

waves, the vertical profile of velocity can often be computed using a significantly 

larger time step than the free surface elevation. 

25. In effect, mode splitting replaces the parameterizations of bottom stress 

and momentum dispersion used in a purely two-dimensional model with values 

computed from the vertical profiles of velocity generated by the internal mode 

equations. Therefore, the vertically integrated, external mode computations do not 

require parameterizations of either bottom stress or momentum dispersion in terms of 

the depth-averaged velocity. The only parameterizations maintained in the external 

mode equations are for the horizontal momentum diffusion terms. These terms are 

usually insignificant in the momentum balance, although for small-scale computations 

horizontal momentum diffusion can be a physically important process. Most often the 

horizontal momentum diffusion terms are retained only to provide numerical stability 

and are parameterized with expressions identical to Equations 30 and 31, i.e., 

or alternatively, 

Mx = Et2 
[ 

awH am 
F + T 

Y I (334 
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(33b) 

where EE, and Ei, are eddy coefficients for horizontal momentum diffusion 

Vertical Turbulent Closure -_-L 

26. The internal mode equations require the parameterization of the vertical 

turbulent momentum transport terms, r Xx and rzy, (also called the vertical shear 

stresses). These terms can dolminate the momentum balance in portions of the 

domain and it is therefore critical to find an adequate closure scheme. Turbulent 

closure has been and continues to be the subject of considerable research. Recent 

summaries of this work include Mellor and Yamada (1982); :Rodi (1984, 1987); 

Ferziger (1987); Johns and Oguz (1987); and ASCE (1988a,b). The most general 

approach is to solve transport equations for the turbulent velocity correlations 1;hat 

make up the turbulent stresses (stress/flux models). However, this adds consid’erably 

to the computational burden of a three-dimensional model. Models b’ased on this 

technique have had little testing and virtually no application to geophysical flows 

(ASCE 1988b). Also, it appears that these models offer no decisive advantage in 

shear flows (Launder 1984). Alternatively, the vertical shear stresses can be 

parameterized in terms of the mean velocity fiel~d using eddy viscosity relationships of 

the form 

On dimensional grounds the vertical eddy v:iscosity E, should be proportional to a 

velocity scale TV multiplied by a length scale 1, both of which are characteristic of the 

turbulent motion. Particularly~ simple expressions such as the Prandtl mixing length 

model can be found for 1~ and I for boundary-layer type flows (Rodi 1987). In more 

complex flows, TV has been related to the square root of the total turbulent kinetic 

energy, k. The terms k and 1 (or some combination of k and I such as wk~2/‘1) can 

be solved for using quasi+mpirical transport equations or specified using empirmal 

algebraic expressions. The primary limitations to the eddy .viscosity approach are its 

inability to simulate counter gradient transport or to account for nonisotropic 

turbulence. A third choice for expressing the turbulent stresses lies between th.e 

stress/flux models and the eddy viscosity models in complexity and potential for 
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representing complex flows. In this approach algebraic expressions (approximations to 

l,he transport equations used in stress/flux models) relate the vertical stresses to k and 

I (or E) without the use of an eddy viscosity hypothesis. 

27. Eddy viscosity models are by far the most widely used method for 

representing vertical momentum transport in coastal flows. These models can be 

expected to work reasonably well in such applications, since the water column is 

typically dominated by the bottom and surface boundary layers. 
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PART III: EXTERNAL MODE: SOLUTION 

Selection Considerations for k.Exte~rnal Mode Solutiog 

28. A basic objective in the developmerrt; of ADCIRC is to prlavide the ability 

to perform computations on very large domains. This requires selecting algorithms 

that satisfy interrelated requirements of a high tevel of grid flexibility,, accuracy, and 

efficiency. To ensure a high degree of solution accuracy, the discretization scheme 

must have numerical amplitude and phase propagation characteristics ,that are n,early 

identical to the analytical characteristics even for relatively poorly resolved 

wavelengths (e.g., good correspondence down to at least x/Ax = 20, where X is the 

wavelength and Ax the grid spacing). Furthermore, solution accuracy requires ,that all 

wavelengths with significant energy, (e.g., as generated in regions of rapidly var,ying 

flow, geometry, and/or topography), be well--resolved. A high degree of solution 

efficiency requires that the algorithm minimizes both the number of dfzgrees of freedom 

and the operations required per degree of freedom per time step. Minimization of the 

number of degrees of freedom is constrained by the need to provide resolution on a 

localized basis and is highly dependent on the accura,cy and the grid Flexibility of the 

numerical scheme. 

29. Because grid flexibi:lity is pivotal to solution accuracy and efficiency, 

various strategies have been devised to allow variations in grid size over a model 

domain. A nested grid approach offers one solu.tion. However, unless the grids are 

coupled, this approach cannot properly account for flow interactions between the 

various grids. Stretched FD grids offer the possibility of providing local refinement 

within a single grid. However, cell aspect ratio requirements limit the degree of grid 

size variability. Furthermore, since cell size in the x direction is fixed for all y 

locations for a given x and vice versa, portions of the domain are often over-refined. 

Boundary-fitted FD schemes that utilize conformal mapping techniques allow thse land 

boundaries to be well-represented in addition to offering local refinement possibilities. 

However, these techniques suffer from the same shortcomings as stretched FD 

approximations and often significant difficulties are encountered in finding a suitable 

transformation function for com~plex geographic regiom. The FE algorithms based on 

,triangular elements are highly flexible and can provide local refinement in a systematic 

and optimal fashion. In fact, circulation cornpul,ations for tides and s.torm surge in 

the Gulf of Mexico (Westerink et al., in press) have been achieved with cell area 

ratios greater than 1 to 15,000. 
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30. Algorithm accuracy per degree of freedom is another critical issue in the 

selection of an external mode solution algorithm. FD schemes were successful fairly 

early in their development owing to the use of the staggered or C grid approach 

(Hansen 1956; Leendertse 1967). Early FE schemes were plagued with severe spurious 

modes that required the heavy--handed addition of non-physical dissipation and 

resulted in very poor accuracy characteristics (Gray 1982). It was not until the 

introduction of the wave-continuity equation (WCE) formulation that robust and 

highly accurate FE schemes emerged (Lynch and Gray 1,979). The WCE formulation 

is based on the rearrangement of the continuum equations prior to any spatial 

discretization. Extensive numerical testing has demonstrated that FE-based WCE 

solutions produce very accurate results (Lynch and Gray 1979; Lynch 1981; Walters 

and Carey 1983; Walters 1983 and 1984). It has also been shown that the 

fundamental success of the WCE FE scheme lies in its ability to propagate 2Ax 

waves (Platzman 1981; Foreman lL983). (This is also the reason why the C grid FD 

solutions are successful.) 

31. Finally, overti algorithm efficiency is essential in the selection of an 

external mode solution. In general, implicit methods are more useful in long wave 

computations than explicit methocls, particularly when small cells or elements are used 

However, the use of implicit methods typically results in time-dependent matrices that 

must be reassembled and resolved at every time step. This increases the 

computatiorml burden significarrtly. The FD methods overcome this problem by 

implementing an alternating direct,ion implicit (ADI) type approach that reduces a 

two+iimensionaJ problem to a sequence of one-dimensional problems, resulting in 

significant computational savings for large problems. It is not possible to apply the 

AD1 approach to FE-based met,hods. However, a WCE FE-based solution has been 

formulated that decouples the solutions for elevation and velocity and allows the use 

of dime-independent matrices for the elevation solution and diagonal matrices for the 

velocity solution. These features have produced a highly efficient WCE FE solution 

called the generalized wave+ontinuity equation (GWCE) formulation (Kinmark 1985). 

32. Careful consideration of the requirements for grid flexibility and a high 

level of accuracy and efficiency led to the selection of the FE-based GWCE 

formulation for the external mode solution in ADCIRC. Extensive analysis, testing, 

and field applications of the GWCE during the past decade have demonstrated the 

unparalleled capabilities and robustness of the scheme, 
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Development of the Generalized-e-Continuitv Equation 

33. The GWCE formulation is a specifically designed WCE formulation that 

yields a discrete system of equations with time-independent matrices. Time- 
independent system matrices are critical in minimizing the computational cost for 
finite-element-based solutions due to the expense of both the matrix assembly and 
decomposition steps. The GWCE is based on the primitive depth-integrated 
continuity equation, Equation 22, and the primitive depth-integrated conservation of 
momentum equations in conservative form, Equations 23 and 24. The primitive 
continuity equation is differentiated with respect to time to yield: 

3 + lmJH 2 m+gg=o (35) 

The primitive momentum equations are differentiated with respect to x and y, 

respectively, and rearranged as: 

i$f = i& {- T - 7 + NH - H & [g + g(( - czn)] 

+ M, +- D, + B, + % - !k] (36) 

$$+ = g {- q - 7 - fUH - H G [; t g(C - on)] 

t M, t- D, + B, + % - %} (37) 

Equations 36 and 37 are then substituted into Equation 35: 

$ {- q - y + fVN - H ;7;; lPO a !Jz + g(I - w)] + Mx 

+D,+B,+~-~}+~{-~--~~-~[JH 

.- H $ [k t g(( - a~)] t M, t D, .t B, + % - %} = 0 (38) 

Finally, the primitive continuity equation is multiplied by a constant, rO, and added 

to Equation 38: 

${-~-~+~VH-H~[~~ a Es + g(< - q)] t M, t D, 

tB,+%-%+r,UH}+${-q:-$+kUH 
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- H & [E + g(( - q)] + M, + D, + B, + % - % + r,VII} = 0 (39) 

34. The advective terms im Equation 39 are in conservative form. Our 

experience indicates that if these terms are put into non%onservative form, improved 

numerical stability is obtained when advection is dominant in the global or local force 

balance. The advective terms in the GWCE are reformulated by expanding the 

derivatives and substituting in the primitive continuity equation, Equation 22. 

$$ + 70 $ + & {U $ - UH g - VH g + fVH - H $ [E + g( < - or/)] 

+ M, + D, + B, + -E - % -e r,UH} + G {V $ - UII g’ 

-VH$fITH-I I a- [b + g(< - on)] + M, + D, ,f B, 
3 PO 

+ % - % + T”VH} := 0 (40) 

35. The lateral closure model in ADCIRC is the simplified eddy viscosity 

model of Kolar and Gray (1990), Equation 33. Substituting this into Equation 40 

gives: 

IJ 2 - UH :; - VH g + fVH - H & [k + g(< - on)] 

+ Dx + B, + % - ?z .t r,UH} + $y {V 2 - UH g -. VH g - fuw 

- H g 1:: + g(( - w)] -t D, t B, + % - % + r,VH} 

+ & [Eh&f + !$$I + $ [E&f t G) ] = o (41) 

where Eh2 is the generalized lateral diffusion/dispersion coefficient. For the 2DDI 

option, Eh2 represents the combined effects of both lateral diffusion and dispersion. 

Therefore I& == Efy and D, and. D, are both set to zero. For the three-dimensional 

ADCIRC options, En2 represents only lateral diffusion. In these cases, Ena = I~:,, 

and D, and D, are explicitly computed from the internal mode solution. It is 

assumed that Eh2 is constant in 1;ime and space and that it has a value of zero on 

the boundaries of the domain. 

36. The lateral diffusive/dispersive terms in Equation 41 can be conveniently 

rearranged to decrease the functional continuity requirements for the symmetrical weak 
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weighted residual formulation from Cl back to CO as is the case for the CWCE 

formulation without any lateral closure model (Kolar and Gray 1990). Rearranging 

the spatial derivatives of the lateral diffusive/dispe:rsive ter:ms in Equation 41 gives: 

3 + T$$ + & {U 3 - UH g - VH g + fVH - II 2 [E + g(( - a~)] 

+ D, + B, + %-% + TJJH} + & {V $-‘UH g- VH $fIJH 

- II $ [E + g(< - a?)] + D, + B, + 2: - % + r,,VH} 

+ Eh2 [& (g + $$% + Eh2 [& (g” + $1 = 0 (42) 

The primitive continuity equation, Equation 22, can be used to substitute for the 

divergence of flux in the lateral diffusion/dispersion terms in Equation 42 to give: 

3 + 70% + & {U 3 - UH g - VH g + fVH - H g [E + g(( - crq)] 

- Eh2 $-& + Dx + B x + % - % + rOUH} 

+ & {V 2 - UH g - VH g - fIJH - 1-I &y [z + g(( - on)] 

- Eh2 
82 
A 

+ D, + By + % - % + r,VH} = 0 (43) 

37. Equation 43 can be solved in conjunction with the primitive conservation 

of momentum equations in either conservative or non-conservative form. ADCIRC 

uses the nonconservative momentum equations, Equations 25 and 26. Incorporating 

the same simplified eddy viscosity model into the non-conservative momentum 

equations gives: 

(44) 

(45) 
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Bottom Stress mmulation 

38. The bottom stress in Equations 43 -. 45 is expressed using a drag tensor 

similar to that proposed by Jenter and Madsen (1989): 

jk [ ::: ] = H~*[iP${ -::$;j] [ Y ] (464 

where 

,r* _ Cf ‘“I”1 + vY2 
(@I 

and 7 is the angle measured counter clockwise from the depth-averaged velocity vector 

to the bottom stress vector. 
39. Defining 

f’~ f + resin(r) (474 

7; E T*COS(-y) (47b) 

and substituting Equations 46 and 47 into Equations 43 - 45 gives the GWCE and 
momentum equations in final form: 

- Eh2 -$ + D, + B, t k po + (~a--d)UH} 

+ & {V g - UII g - VH $$ - f’UH - H & [g + g(< -- cull)] 

+ D, + By + % + (7,.-r;)‘VH} = 0 (48) 

40. In the 2DDI option, the bottom stress and depth-averaged velocity are 

assumed to be co-linear (7 = 0:). Cf is specified directly as an input parameter or 
computed using one of the relationships given in Equation 29. In the three- 
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dimensional ADCIRC options, 7 and Cr are computed using rt,x and ruby from the 

internal mode solution. As noted above, y is the angle measured counterclockwise 

from the depth-averaged velocity vector to the bottom stress vector. Cf is determined 

as: 

Cf = 
(4, + r:,,y 

P&J2 + VZ) 
(51) 

It is easily shown that Equations 46, 47, and 51 introduce the bottom stresses 

computed in the internal mode solution directly into the external mode equations. 

Develoument of Weighted Residual Statements 

41. To develop a Galerkin weighted residual statement for the GWCE, Equation 

48 is weighted by the interpolating basis function, 4i, and spatially integrated over 

the interior domain, R, giving: 

<$, c+$>* + <r$, 4i>a + <$$, qQn + <$$, $pn = 0 i=l, . ..N 

where 

<a,b>, = 
6 

] a b dR 

R = the global domain 

N = number of nodes in the spatial discretization 

A, = U 2 - UH g - VH g + f’VH - H & [E + g(( - or/)] 

- E,, $& + D, + B, + %X po + (.ro-G)UH 

A, 5 V $ .- UH g - VH g - f’UH - H & [k + g(( - on)] 

- Eh2 
a? 
A 

+ D, + B, + % + (r,-r;)VH 

Applying Gauss’s theorem to the integrals in Equation 52 that contain spatial 

derivatives gives: 

<~, ~i>n .t <ran, 4i>n - <A,, ~>* - <A,, ~>,, 

= - k EP,, + *yanyl#i d’ i=l, . ..N 

(52) 

(534 

(53b) 

(54) 
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where r is the boundary of the domain R. The direction cosines are ,defined as: 

anx q cos( Ox) (554 

CYllY ? cos(Oy) (55b) 

where Ox and 0, are the (spatially varying) angles measured to’ the outward rrormal at 

any point along the boundary from the positive x and y axes, respectively. 

42. IJsing the conservative form of th,e momentum equations, E,quations 23 and 

24, recasting the advective terms in Equation 53 into conservat,ive form, and using the 

simplified lateral diffusion model, Equation 33, Ax and A, can be written as: 

(564 

(56b) 

Substituting Equation 56 into the line integral in Equation 54 and assuming that Ehz 

is zero on the boundary, Equation 54 becomes: 

4i>12 + CT0 2 #i>rl - <:U 2 - UH g - VII g + f’VH t> 

- H & [f$ + d< - w)] - Eh2 $& .t D, + B, + %; + (rn--r$)UH, $$>o 

- <v $$ - UlI 2 - vH[ $-$ - f’Uff - fJ !& [E + g(C - on)] - Ena s 

+ D, TV B, + po 2!t + (ro-T;)VH, +,, =_ - k [~UHu,,, + VHor,,) 

+ TO(U’IQ,,, t VHony)]$i dr i = 1, . ..N (57) 

43. The terms that involve partial derivat,ives of the barometric pressure, 

surface elevation, and Newtonian equilibrium tidal potential can be written as: 

(584 

(58b) 

44. The normal flux across the boundary is defined as: 

&,I zz UHo,,, -t VHa,l, (59) 

45. The line integral in Equation 57 is nonzero only on fluxspec:ified 

boundaries, I’o. Using the specified normal flux Qn* for Qn, and substituting 

Equations 58 and 59 into Equation 57 gives the final symmetrical weak weighted 
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residual statement for the GWGE: 

(‘30) 

where 

wx E - urn g - VII g + f’VH - 5 $ - gH & (6 - (YV) + Dx + B, 

+ $f + (rO-ri)UH @la) 

W, q - UH g-VHE- f’UH-#gH&($-an)+Dy+By 

+ % + (r-o-r;)VH (6lb) 

46. The weighted residual form of the conservation of momentum equations is 

obtained by weighting Equations 49 and 50 by 4i and integrating over the domain R: 

<g + u 2 + v g - f’V + g [E + g(( - cq)] 

- A Ens [&l + @] - 2 - 2 - 3 + r;U, 4i>o = 0 (62) 

<g + u g + v g + f’U + g rg + g(( - q)] 

- & Ena [p + p] - 3 - 2 - 3 + r$V, &>o = 0 (63) 

Applying Gauss’s theorem to the lateral diffusive/dispersive terms in Equations 62 and 

63, and recalling that E n2 equals zero on the boundary, gives the symmetrical weak 

weighted residual form of the momentum equations: 

<g, di>a - <f’V, $i>tr + Enz<p, &(4)>o + Ehs<F, &($)>a = 

- <!& [k + g(( - (YT/)] - 3 + 7&U, $i>n 

- <u au 
E + V g, &>a + <p + 2, #i>* (64) 
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Time DiscretizatQ 

47. The GWCE equation is discretized in time using a variably weighted, 
three-time-level, implicit scheme :for the linear terms (i.e., those terms on the left side 

of Equation 60). W, and W, are treated explicitly. The time derivatives that 
appear on the right side of Equation 60 are evaluated at two known tim.e levels. The 
time-discretized GWCE is: 

where 
At = time step 
k+l., k, k-l = future, present, and past time levels 

ffl, LYE, (Ye = time weighting factors 

The time weighting factors are selected so that: 

a, -t cl2 + as =: 1 

aj := a3 

Rearranging Equation 66 gives: 
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(1 + *) <C’+‘, 4i>* 

+ a,gAt2[<h~k+‘, $$,a + <hgk+‘, $$>,,I 

+ -%p [<gk”, g>n + <Sk”, gi>rl] 

= 2 <ck, &>a + (2$& - 1) <Ckel, @i>n 

- n,gAtz[<hgk, $$>,, + <hgk, $$>n] 

- n,gAt’[<hgk-‘, @an + <h$‘-‘, $$>,,] 

, Eh;At I<$‘-‘, g>n + <gk-‘, f&i>nl 

+ At<Uk(ck - [k-‘), $$>n + At<Vk(ck - ck-‘), +n 

+ Ata<W$, 2,” + At=<W$, F>‘? - At2Fi i=l, . ..N 

where 

Fi = , (Qt;‘2,,Qii’ + 

rQ 

7oa1QkG’ + ~o~Qk1: + ~oa~&hi’) $i dr 

(67) 

(68) 

48. The symmetrical weak weighted residual form of the momentum equations 

are discretized in time using a two-timelevel implicit Crank-Nicolson approximation 

for all terms except the diffusive terms, whicIh are treated with a variably weighted, 

twetime-level implicit scheme and the advective, dispersive, and baroclinic terms, 

which are treated explicitly: 

<Uk+lA- Uk t , $+>a + i <T$k(Uk+’ t Uk), &>* - <Gk(Vk” + Vk), #i>* 

+ El,2 [PI <p”+‘, &&&, + /A <%2k, &(&>a 

+ bl 2-p”‘: g$& + h <qgq g&>,,] 

= - ; <&&?, g(<k’,’ - a7k”)] - (;fi)k*lg ,#,i>n 

- i <& [g + g(Ck - Tk)l - (%)k, 4+i>f) 

- 4i>a + <$ t $, (hi>* i=l, . ..N (69) 

<vk+‘A- Vk t 9 #i>n + !j <rik(Vk+’ t Vk), $i>n +‘<+k(Uk” + Uk), 4i>* 
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wh,ere /I, and & are time-weighting factors at the future and present time levels. 
Th,ese factors are selected so that 

01 + 82 = 1 

Rearranging Equations 69 and 70 gives: 

<(l + $7;‘) Uk+! di>* - g <:f’kVk+,l di>n 

+ &E&t [<p’+; &(&)>, + <$$;!k’: &(&)>l’] 

= <(l - +t,;y Uk, $hi>n + g <f’kVk, $i>* 

- ,D,Ek,,At [<pk, $&& + <%F”, $&B~~] 

- $! <& [P$‘+ g((k+l - a17k+l)] - (%&+:I, $i>n 

- g <& [g + g(Ck - CKl;lk)] - (%)k, $i>bcl 

- At <Uk g” + Vk gk, #i>n + At <!$ t $, +i>fl i=l, . . ..N (71) 

<(I + $+T;‘) Vk+i f$i>n t 9 <Zf’kUk+l, Cpi>n 

+ B,EhzAt [<pk+: &$& + <?G@“‘f $$,$>n] 

= <(l - $G$k) Vk, $k>n - g <ftkUk, $i>n 

- &&At (<pk, &&)>,, t <“a-=‘, $f$)>Ll] 

- g <& [g’t g(ck+’ - (l?Jk+‘)] - (a)k+l, 4i>f> 

+ dCk - Wk)l - (sIk7 $i>* 
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- At <Uk gk + Vk gk, #i>n + At <$ + 3, #i>o i=l, . ..N (72) 

49. There are two differences in the solution of Equations 67, 71, and 72 in 

the 2DDI option and the three-dimensional options. In the 2DDI option, the friction 

parameter (Cr or one of the parameters in Equation 29) is specified in the model 

input. The dispersive terms are included with the lateral diffusive terms by 

eliminating D, and D, from Equations 67, 71, and 72 and setting Esh = EYE. In the 

three-dimensional options, Cf, 7, D,, and D, are computed from the most recent 

internal mode solution. In flows where the velocity reverses direction over the depth, 

it is possible for the depth-averaged velocity to be zero while the bottom stress is 

nonzero. In this case the drag coefficient computed in Equation 51 becomes infinite. 

To prevent the numerical difficulties that this causes, an upper limit is set on the 

computed drag coefficient. If this limit is exceeded, 7 and Cf are set to zero and the 

bottom stress computed in the most recent internal mode solution is passed directly to 

dx 4 the external mode equations. In the GWCE, K and -$ determined in the internal 

mode solution are subtracted from W, and W,, respectively. In the momentum 

dx 7-k equations, m and -& are subtracted from the right-hand side of the 

corresponding equation. This modifies the final terms in Equations 71 and 72 to 

tix - hi At <- p + m + $$, 4i>o and At <- $& + 3 + g, &>o, respectively. 

Soatial Discretization 

50. In order to complete the conversion of the governing partial differential 

equations into systems of algebraic equations, the FE method is applied to the time- 

discretized form of the symmetrical weak weighted residual equations developed in the 

previous section. Specifically, elemental approximations to the variables are 

substituted into Equations 67, 71, and 72, the elemental equations are srrmmed over 

the global domain, and the required degree of inter-element functional co:ntinuity is 

enforced. Interpolating basis with at least C? functional continuity are required to 

discretize most of the dependent variables. Departures from this are noted below. 

51. In all linear term,s, surface elevation, velocities, and depth are 

approximated over each element as: 
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(734 

(73b) 

where nel equals the number of nodes per element. In nonlinear terms and certain 

forcing terms, the entire term may be interpolated over the element as described 

below. 
52. Tb,e nonlinear and forcing terms in the GWCE are approximated as 

follows. 
a? The Coriolis parameter and the fluxes in the Coriolis term are 

approximated by: 

b. The finite amplitude component of the free surface gradient is 
approximated by: 

(744 

c., The combined barometric pressure and Newtonian tidal potential term 
is approximated by: 

The total depth factor in this term is evaluated using an Lz 
approximation: 

Hk N H,kl z 2. "5' Hk 

nelj=1 1 

d. The surface stress terms are approximated by: 

(2)” E ;$ (;!)i #j 

(2)” g ;t; (;z)r 4j 

(76) 

(78b) 
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e. The bottom stress and rO terms are approximated by: 

(794 

(7;’ 70)Hk\rk 2 ;+: [(T; - T&IV]; tij (79b) 

In the three-dimensional model options, if the computed ,friction 
coefficient exceeds the maximum allowable value, the bottom stress 
terms are approximated directly by: 

5x 
k 

PO (804 

(80’-‘) 

f, The dispersive terms are broken up into their components D,,, D,, 
and D,,, (defined in Part II), and discretized as: 

(81~) 

g. The baroclinic terms are not included in either ADCIRC-2DDI or 
ADCIRC-3DL. Therefore the discretization of these terms is not 
considered here. 

h. The velocities that multiply the time derivative components of the 
nonconservative advective terms are approximated using LZ 
interpolation: 

(82b) 
The free surface elevations that appear in these terms are 
approximated using the standard CO approximation, Equation 73a. 
The spatially differentiated components of the non-conservative 
advective terms are approximated by 

(UH g)k : (UH)k e13: q g$ 
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M = the total number of elements 

R,, = the elemental domain for the element, el. 

(86) 

(874 

Wb) 

(87~) 



Note that the elemental matrices, Mlj (‘1 , M\T), M(f) , M\t,) and M\y) are 

symmetrical andi that Mlj , c5) M(7), c8) ‘, , and Mlj are nonsymmetrical. 

54. The fully discretized GWCE can be written in a compact form as: 

j=, ;t; [Mt~El {C;+‘> = e;;,iPtwcE) i=l, . ..N (88) 

where 

M;pE = (1 + 7) ‘Oat Ml;) + alg,&z@ + Ek$! MI!) (89) 

pFWCE n,1 
= 

1 
c [zM~f’(f + (F. - I)&) k- 

j -1 
,i cj ’ - u,gAt2hlj~)C; 

- @t2Mj~)(~-’ + $?/! M\;‘$’ 

+ At [M{;)U;I(C: - (i-l) -+- M{;)V#f - (y-1)] 

- At’[M~‘q)(UH)$J; + M(;)(VH)$f -t Mj;)(UH);IV~ + M$?(VH);IVI;] 

+ At’[M(;)(f’VH)f - M\f)(f’UH);] - K*$ M\:)(c’)f 

- gAt’M&$ - (Y~])!H;~ + At2[M@): + M&);] 

- At’{M\;)[(T; - 70)HU]; + M\;)[(r; -’ T~)HV]~} 

- At’[Mj;)D,,,f f Mi;)Duv; + M;!)D,,,; $- Mj?Dvvf]] -- AtZFi 

i=l, . ..N (90) 

In the thrctiimensional options, :if the computed friction coefficient exceeds the 

maximum allowable value, the friction term in the right side load vector PycE is 

slightly different: 
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- At’[M\+)(UH);,U; + M!~)(VH)~rUf + M\;)(UH);rVf -+ Mj6)(VH)ktVf] 

+ At’[M\;)(fVH)r - M(,;)(fUH)f] - t+$ MJ:)(<s)i 

- gAt’M!;)(fi - an)fH;, 0 + At’[M$)(%); + M!;)(z):] 

- At2{M(;)[(F); - r,,(UH)$ + M$)[(F)f - r,,(VH)f]} 

- At’[M\t)D,,,,f + M(f)Dnvf + Mi;)D,,; + M$;)D,v$] - At2Fi 

i=l, . ..N 

55. Global assembly and enforcement of the Co functional continuity 

requirement leads to the following global system of equations: 
N 
C [ Qf;qCE ] { g,;+’ } = { $jWCE ) 

j =l 

(91) 

(92) 

where 
Qp!CE 

1J 
= the global banded system matrix 

,pFWCE 1 = the global load vector 

s<k+l = the global nodal elevation vector J 

56. The fully discrete form of the momentum equations is obtained from the 

timediscretized symmetrical, weak weighted residual form of the momentum equations, 
Equations 71 and 72, as follows. 

a. The local acceleration terms are mterpolated using Equations 73b and 
73c. 

b. The friction terms are approximated by: 

.;kUk+’ g 
nel 

c TqJ~“$bj 
j =I 

(934 

(93b) T:kvk*l N 
n,l 

_ c 7/kVk”l$. 

j =I 
*J J J 
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WC) 

(934 

In the three-dimensional model options, if the computed friction 
coefficient exceeds the maximum allowable value, the bottom stress 
terms introduced on the right-hand side of the momentum equations 
are approximated by: 

c. The Coriolis terms are approximated by: 

(944 

Pb) 

(954 

& The lateral diffusive dispersive terms are approximated using 
Equations 73b and G 3c for velocity and Equation 77 for total depth. 

e, The barometric pressure and Newtonian tidal potential are 
interpolated using Equation 76. 

f. The surface eleva.tion is approximated using Equation 73,a. 

g. The surface stresses are evaluated as: 

p&k+, : ;+: (~)yc$j (964 

(96b) 

WC) 

(96d) 

h. The advective terms are approximated by: 
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(974 

Wb) 

WC) 

(974 

where U$ and Vi, are defined in Equation 82. 

I. The dispersive terms are broken up into their components D,,, D,,, 
and D,,, (defined in Part II), an.d discretized as: 

@a) 

(; p,’ ! (&Jk>: Dvvf $ 
where H,r is defined in Equation 77. 

j. The baroclinic terms are not included in either ADCIRC-2DDI or 
ADCIRC-3DL. Therefore the discretization of these terms is not 
considered here. 

57. Substituting the approximations in Equations 93 - 98 into Equations 71 

and 72 and summing over the elements gives the discrete system of equations: 
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- At(&)k[&D.,j i=l, . ..N 
d 

+ M$)D,$ 1 (102) 

58. The M[:) matrices on the left side of Equations 101 and 102 and in the 

first two terms on the right side of these equations are lumped so that all elements 
are added onto the diagonal. The M(:) matrices on the left side of Equations 101 

and 102 are decomposed into diagonal and non-diagonal matrices. The non-diagonal 
portion of M(f) IS moved to the right side of the equations. These operations give: 

; 
n,l 

C 
el=i j=i I 

(1 + $.$;$M(,‘L)U;+l - &tf~~MijL)V~tl + &Eh,AtM{;D)Uf*’ 

= (1 - $%;;)M{f”)U; - ~f’~M$“)V; - Ek,2At(&M{;ND)U;J1 + &M\;)U$ 

- g+f~$)(($ + ,y - aqf’l) + ($ + (f - a$)] 

+ ~M[;)[(~)~+’ + (s)f] - At(U:,M$Jf + V;,Mj$f) Cl 

- At(&Jk[‘“l, i t7)D,,“f + M\;)D,$] 
3 

i=l, . ..N (103) 

and 

s 
nel 

C [(I~ + &t#M(;L)V~+l + 
el-I j =1 

$$f~M!~L)U~+l + B,Eh,htM~~D)V~‘l 

= (1 - @$)MIj (lL)Vk - +tf’:M!fL)U~ - Eh,At(fl,M{;ND)V:+l+ &)V~) , 

- g$(s)[(&’ 1 peg + (5” - WI;+‘) + ($ + cl; - c$)] 

+ $M!;)[(~)~+’ + (a)$ - At(U;,M$;)Vf + VtM$;)V$ 0 

- At(q) [MJ i 1 k t7)D,,‘; + M\;)Dvv;]] i=l, . ..N (104) 

where 

M(fL) = the diagonally lumped elemental matrix MIj (1) 

M\;D) = the diagonal portion of the elemental matrix MIj (3) 

46 



M!fND) = the non-diagonal portion of the elemental matrix MIj (3) 

59. The fully discretized momentum equations can be written in compact form 
as: 

jt=, >: [M;?] {Uf’r} - [M;?] {V~“} =,!;, {PfME} i=l, . ..N (105) 

el=i >; [M:?] {Us”} + (M$ {Vf’r} =e;z, {Py} ; i=l, . ..N NW 

where 

M;y = (1 + +$) MI;“) + @,Eh2AtM\y) (107a) 

M?yE F At rk (IL) 
1.l rf j”lj (107b) 

+T lj a~ AtM(l)[(rsx)+l + (B)$ - At(U;, Mj;)Uf + V~IMj~)U~) 

- At(&Jk[M$;)Du”; + Mj?D,,f] 
I 

i=l, . ..N (107c) 

PyE f ;t: (1 - +;s)MIj (lL)Vf - .+;$;“‘Uk 
1 

- E,,At(&M\;ND)V~+’ + p2M\;)V;) 

- g$!,{s)[(&’ I peg + ,y - a$+‘) + ($ + (; - +I 

+ +f(;‘[(~);” + (f#] - At [U;IM\;)V; + V;rM$)V:] 

- At(&)k(MI;)D,,f + Mj?D,,f]] 
el 

i=l, . ..N (107d) 

In the three-dimensional model options, if the computed friction coefficient exceeds the 
maximum allowable value, the bottom stress terms appear explicitly on the right side 

of the momentum equations and therefore are included in PyE and Pr”? 

py 3 “5’ 
j =I 

M(1;“‘Uf + $?if;M(;L)“f 
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- EhzAt(P,M\;sD)Ufj’ + @,M(;)U;) 

- g&$f$?@.? 1 peg + ,F” - +)I 

+T lj QIJ AtM(l)[(rsx)k+l + (%);] - At(U;, Mi;)Uj + V;rM~$I~) 

- At(n’)“[M$‘i)Du.; + 
d 

M$?D,,$ - AtM(:)(a);] 

prME z “5’ 
j =L 

M(tL)Vi - At k (lL)Uk 
TfjMd J 

- Eh2At(P,M\;ND)Vf+1 + P,M(;)Vf) 

- Q+,i [(p,,g At (8) J&’ + <;+I _ 

+ +f\j’[(~)f” + (%);I - At U;IM!;)V; ( + V:,M{“)Vf) 

- At(q) NJ i ’ k (7)D.,: + Mj;)D,,f] - AtM~;)(~)f] 

60. Global assembly and enforcement of the Co functional contjnujty 

requirement gives the following systems of equations: 
N 

jCI [sM;rE] {We+‘} - (sM;y] {sVf+‘} = {sPqME} i=l, . ..N 

j;, (sM;y] {sU;+i} + [sM;y] {W;“} = {spy} i=l, . ..N 

where 

g&E 11 ’ sMTrE = global diagonal system matrices 

gpy, gpy = global right-handside load vectors, 

QJf”, gVf+l = global velocity vectors in the x and y directions 

Solution Strategv 

(108a) 

(108b) 

(109) 

(110) 

61. The horizontal discretization for ADCIRC has been implemented with 
three-node linear triangles and four-node bilinear quadrilaterals. The triangle element 
provides a maximum degree of flexibility and is extremely cost-effective on a per-node 
basis for long wave computations. (1) All elemental matrices Mrj through Mrj are (8) 

integrated using a numerical quadrature rule that is specified with the input data. A 
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four-point Gaussian quadrature rule integrates the elemental matrices, Equation 87, 
exactly (Connor and Brebbia 1976). However, for most applications, a t#hree-point 
Gaussian quadrature rule appears to be sufficient. The elemental matrices are 
computed once and then stored for use during the time-stepping operations. 

62. The GWCE is solved first. The global system matrix for the GWCE, 

gMtyE, is time-independent and is therefore assembled and LU decomposed only 

once. gMtyE has a banded structure with a band width that is dependent on the 

node numbering of the grid. Prior to running ADCIRC, the node numbering should 
be optimized to minimize the maximum difference in the global node numbers 
associated with each element in the grid. The right side load vector, Q>$WCE 1 , ‘8 

efficiently updated every time step since all elemental matrices have been 
pm-computed. Flux-specified boundary conditions have been incorporated into the 
load vector by the model formulation and therefore require no additional equation 
manipulation. Elevationspecified boundary conditions are incorporated into the 
system matrix, aM!yE, by zeroing out rows corresponding to boundary :nodes with 

specified elevations and placing a value of unity onto the diagonal. The boundary 
condition values are then stored into the appropriate location in aPi GWCE. The 

equations associated with elevation-specified boundary conditions are multiplied through 
by a constant to ensure that the modified global matrix has a good condition number. 

The modified system of equations (i.e., Equation 92 modified to include the elevation- 
specified boundary conditions), is then solved for elevation at the new tilme level, k+l. 

63. The momentum equations are solved second and use the eleviation values 
at time level k+l computed from the GWCE. The global system matrices for the 

momentum equations, (gM:r and gM:y), are time-dependent and therefore need to 

be reevaluated at every time step. However, since these matrices are diagonal, matrix 
evaluation and decomposition are very economical. Specified normal flux boundary 

conditions are incorporated into Equations 109 and 110 by reorienting the x and y 
equation pairs that correspond to the specified flux boundary nodes into a locally (for 
each node) normal/tangential coordinate system. The reoriented equations are then 
replaced by the corresponding specified normal flow boundary condition values (Wang 
and Connor 1975; Gray 1984). 

64. The right sides of Equations 109 and 110 are dependent on [;+I, (t, Uf, 

and Vt, which are all known quantities, and on II?+’ and Vs” (because of the lateral 

49 



closure model). Therefore, these equations must be solved iteratively for velocities at 
the new time level, k+l. sPIME 1 and sPrME are updated each iteration with the new 

values of Uk” and Vk’i 
J J 

until a specified convergence criteria has been reached. When 

Eh2 is zero, no iteration takes place. 

65. When a three-dimensional option is used, the external mode solution 

depends on the internal mode solution through D,,, D,,, D,,, Cr and 7 [or if the 
drag coefficients exceed the maximum allowable values on rbX and rbY]. These 

quantities are computed at each internal mode time step and assumed to be constant 
in time for subsequent external mode time steps. If the external mode solution and 
the internal mode solution are evaluated at the same model time, the external mode 
solution is evaluated first. The updated surface elevations and depth-averaged 
velocities are then used in the internal mode solution. This solution sequence requires 
the specification of initial values for D,,, D,,, D,,, Cc, and 7 as input parameters for 
the external mode solution. 

Fourier Prooerties of the External Mode Solution 

66. Fourier analysis characterizes the damping and phase propagation properties 
of a numerical solution in relation to the corresponding analytical solution. Although 
it is typically applied to the one-dimensional form of the shallow-water equations and 
a constant bathymetric depth is usually assumed, the results give a good indication of 
how a circulation model will behave in a more general two-dimensional, nonlinear field 

application. They also allow interxomparisons with other discretization strategies. 

Procedures for applying Fourier analysis to the shallow-water equations are described 

by Pinder and Gray (1977) and Lynch (1978). 
67. The discrete form of the ADCIRC 2DDl governing equations has been 

Fourier analyzed. These results are presented below along with results from the 
Fourier analyses of several other numerical solution schemes for the shallow-water 
equations. All of the other numerical schemes that were considered use primitive 

formulations of the shallow-water equations (as opposed to the generalized wave- 
continuity formulation used in ADCIRC). The schemes include a finite element 

solution using linear elements (PEFE) (Wang and Connor 1975; Westerink, Connor 
and Stolzenbach 1987, 1988), a second order, nonstaggered, finite difference solution 
(PENSFD), and a second order, staggered, finite difference solution (PESFD) (Hansen 
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1956; Leendertse 1967). A second order, Crank-Nicholson scheme was used to 
integrate the PEFE, PENSFD, and PESFD in time. As described previously, 
ADCIRC uses a threetime-level scheme for the GWCE ((~1 = 0.35, or = 0.30 and 

os = 0.35), and a Crank-Nicholson scheme for the momentum equations. The bottom 
friction coefficient (Equation 46) in each model was specified as 

r* = 0.8 ?r W/A 

where X is the wavelength of the Fourier component. 

(111) 

68. The modulus of the propagation factor indicates the ratio of the numerical 

amplitude to the analytical amplitude during the propagation of one wavelength. The 
phase of the propagation factor indicates the phase lag or lead a given wavelength 

experiences during one period. Figure 1 presents the modulus and phase of the 

propagation factor for the PEFE and PENSFD schemes. Comparisons are shown for 
c, = 0.1, 0.5, 1.0, and 2.0 where C, is the Courant number based on wave celerity, 

w 

At is the time step, and Ax is the grid spacing. For increasing C,, both the PEFE 
and the PENSFD solutions have less damping than the analytical solution for low 
ratios of x/Ax. Neither solution, regardless of c,, propagates energy at the shortest 
resolvable wavelength, X = 2Ax. This characteristic of PEFE and PEN!IFD solutions 

accounts for the severe 2Ax numerical noise problems encountered using these schemes. 
69. Figure 2 presents the modulus and phase of the propagation factor for the 

PESFD scheme and the generalized wave-continuity equation finite element 

(GWCEFE) scheme used in ADCIRC. For low ratios of x/Ax, both sch.emes provide 
less damping than the analytical solution and show poorer phase propagation behavior 

as C, increases. For a fixed & and x/Ax, the PESFD scheme has slightly better 
damping characteristics, while the GWCEFE scheme has better phase propagation 
characteristics. At low C,, the GWCEFE solution leads the analytical solution. As C, 
increases, the GWCEFE phase propagation factor swings through a zero value 

(corresponding to perfect phase behavior) and then develops a phase lag. This 
indicates that there will be a local minimum in the time convergence curve with 
optimal accuracy being achieved at c, E 0.5. 

70. The primary difference between numerical solutions using PEFE and 
PENSFD schemes and numerical solutions using GWCEFE and PESFD schemes is 

that the latter schemes propagate energy at X = 2Ax. Propagation of 2Ax waves 
corresponds to a non-folded dispersion relationship and prevents two responses from 
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Figure 1. Modulus and phase of the propagation factor for PEFE and PENSFD 
solutions (Continued) 
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Figure 2. Modulus and phase of the propagation factor for GWCEFE and PESFD 
solutions (Continued) 
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developing to a single forcing frequency, i.e., one physical response at the forcing 
wavelength and one numerical response at a wavelength near 2Ax (Platzman 1981). 
As a consequence, GWCEFE and PESFD schemes do not have the severe 2Ax noise 

problem of the PEFE and PENSFD schemes. 

Convergence Prouerties of the External Mode Solution 

71. In order to verify the accuracy of the external mode solution of ADCIRC 
and to establish convergence properties in space and time, ADCIRC-2DDI was applied 
to a modified form of the quarter annular test problems originally developed and 
applied by Lynch and Gray (1978, 1979) and Gray and Lynch (1979). These two- 
dimensional, variable-depth test problems were developed to give insight into a 
numerical scheme’s 2Ax oscillations and its ability to propagate longer physical waves. 
The original geometry and bathymetry of Lynch and Gray (1978, 1979) were modified 
as follows. The arc of the annulus was increased to 135 deg*; the inner radius was 
decreased to 125,000 ft; the outer radius was increased to 650,000 ft. The resulting 
geometry, with three land boundaries and one open ocean boundary, is shown in 
Figure 3. A linearly varying bathymetry was used that increased from 50 ft at the 
inner radius to 260 ft at the outer radius and a quadratically varying bathymetry was 
used that increased from 50 it at the inner radius to 1,352 ft at the outer radius. 
These modifications accomplish two things. First, the modified domains are more 
representative of a coastal region that extends to near or beyond the Continental Shelf 
break. (In fact, the geometry and bathymetry are idealized approximations to the 
New York Bight.) Second, the numerical difficulty of the test problems is increased. 

72, A sequence of four discretizations was considered: a 6- by S-node 
discretization (Ar = 105,000 ft), an ll- by 15-node discretization (Ar = 52,500 ft), a 
21- by 29-node discretization (Ar = 26,250 ft), and a 41- by 57-node discretization 

(Ar = 13,125 ft). These are shown in Figure 4. Grids consisting of linear triangles 

and of bilinear quadrilaterals were tested and gave very similar results. Only the 
bilinear quadrilateral results are presented here. For each grid, live different time 

steps were applied: At = T~s/8, At = T~a/16, At = T~s/32, At = T~s/64, and 
At = T~s/128 where TI.I~ is the Ms tidal forcing period equal to 44,712 seconds. 
ADCIRC-2DDI was run in its linear mode with an Ms forcing frequency. Therefore, 

*A table of factors for converting non-S1 units of measurement to SI (metric) units is 

presented on page 6. 
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a. 6- by 8-node grid 

b. 11- lay 15-node grid 

Figure 4. Grids used for the test problem (Continued) 
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c. Zl- by 29-node grid 

d. 41- by 57-node grid 

Figure 4. (Concluded) 
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the theoretical model response should have included only an Mr wave. The resolution 
of the Ms wave provided by the sequence of grids varied between 17 and 312 nodes 
per wavelength for the linearly varying bathymetries and between 17 and 703 nodes 
per wavelength for the quadratically varying cases. Thus the Ms wave was always 
well-resolved. C, varied between 0.13 and 39 for the linearly varying bathymetries 
and between 0.13 and 88 for the quadratically varying cases. ADCIRC-2DDI is 
unconditionally stable in its linear mode and therefore permits the use of Cr > 1. 

73. All cases were forced at the open ocean boundary using < = 1.0 sin(wust) 

where wuan 2r/T~r is the Mz forcing frequency. All other forcing mechanisms (i.e., 

tidal potential, free surface wind stress and atmospheric pressure gradients) were set to 
zero. The Coriolis and advective terms were also neglected. The bottom friction 
coefficient was set to r* = 0.0001 and the value of r, = 0.0001. All total depths 

were set equal to the depth to the geoid. 
74. The computations were hotstarted using the analytical solution for the 

specified geometry, bathymetry, and friction coefficient. The computations were then 
run for 10 tidal cycles to allow a dynamically steadystate numerical solution to 
develop. The elevation and radial velocity solutions at each node were recorded 
during the eleventh tidal cycle and were Fourier decomposed. Typical results are 
shown in Figure 5 for the sequence of runs using the coarsest grid and the linearly 

varying bathymetry. The figures compare the exact analytical solution to the 
maximum and minimum ADCIRC-2DDI solution for all nodes at the same radius. 
These plots indicate that there are no spurious 2Ax modes in either the radial or 

angular directions. 
‘75. Error measures were calculated from comparisons between the harmonically 

decomposed numerical solutions and the analytical solutions. These were defined as: 

(113a) 

(113b) 

(113c) 
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where 
N, = the number of nodes within the grid 

ati = amplitude of the sine component of the analytical elevation solution at node i 

bt, = amplitude of the cosine component of the analytical elevation solution at node i 
1 

ati = amplitude of the sine component of the numerical elevation solution at node i 

b:, = amplitude of the cosine component of the numerical elevation solution at node i 

a A’ 
Ui 

= amplitude of the sine component of the analytical radial velocity solution at 
node i 

bi, = amplitude of the cosine component of the analytical radial velocity solution at 

at: 

node i 
= amplitude of the sine component of the numerical radial velocity solution at 

node i 
bt, = amplitude of the cosine component of the numerical radial velocity solution at 

1 node i 

These error measures represent the absolute errors in the sine component of the 

elevation solution (El), in the cosine component of the elevation solution (E2), in the 
sine component of the radial velocity solution (E3), and in the cosine component of 
the radial velocity solution (E4). 

76. A summary of the error measures computed for all of the test runs is 

presented in Table 2. The error measures are plotted against & (the average value 
for a given grid) for the linear bathymetry test cases in Figures 6 and 7 (Figure 7 is 
a blow-up of the low C, range in Figure I?), and for the quadratic bathymetry test 
cases in Figures 8 and 9 (Figure 9 is a blow-up of the low C, range in Figure 8). 

All errors show good spatial convergence; i.e., the more refined the grid, the lower the 
error at any Cr. In time, the errors decrease as c, decreases, until C, = 0.9 - 1.75 
for the linear bathymetries and C, = 3.5 - 7 for the quadratic bathymetries. A well- 

defined local error minimum exists for all grids within these Courant ranges for both 
the sine and cosine components of the elevation and radial velocity solutions. This 
local error minimum occurs because the phase of the propagation factor changes from 
a phase lead to a phase lag, passing through a region of almost perfect phase 

behavior, near C, :: 0.5 (see Figure 2 and associated discussion). Figures 6 - 9 
suggest that the optimal behavior occurs at somewhat higher values of &. These 
figures were plotted using the average value of C, for a given grid. However, the 

primary errors are generated in the shallow portions of the domain. If the C, is 
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adjusted to account for this, the optimal range of values changes to C, = 0.52 - 1.07 
for the linearly varying bathymetries and C, = 1.07 - 2.14 for the quadratically 
varying bathymetries. 

77. It is concluded that the external mode solution used in ADCIRC has 
excellent numerical properties. There are no spurious 2Ax or 2At modes due to the 
ability of the GWCEFE scheme to propagate high wave number energy. Convergence 
properties in space and time are good with superconvergence occurring in the range 
C, = 0.5 - 1.5. In this range, more accurate solutions are obtained using larger time 

steps. 

ADDliCatiOn of ADCIRC-ZDDI to the Ennlish Channel and Southern North Sea 

78. The accuracy and behavioral characteristics of the external mode solution 
have been tested in field applications including (a) tidal and hurricane storm surge 
simulations in the Gulf of Mexico (Westerink et al., in review), (b) tidal simulations 
in the English Channel and Southern North Sea, (c) tidal simulations in a small 
coastal inlet (Luettich, Birkhahn, and Westerink 1991) and (d) tidal simulations in 
the New York Bight. The English Channel/Southern North Sea system is probably 
the best documented field site presently in existence for testing a long-wave, 
hydrodynamic model. Since the emphasis of this report is on the development and 
testing of the various components of ADCIRC, the results of applying ADCIRC-2DDI 
to the English Channel and Southern North Sea are presented below. 

79. In the mid-1980’s considerable effort was put forth to establish and make 
readily available a set of standard grids, boundary conditions, and verification data for 

model evaluation in the English Channel and Southern North Sea (Werner and Lynch 
1988). This data has been used as the basis fo,r modeling studies for the Tidal Flow 

Forum I at the Conference on Finite Elements in Water Resources, Lisbon, Portugal, 
in 1986 and for the Tidal Flow Forum II at the VII International Conference on 
Computational Methods in Water Resources, Ca:mbridge, MA in 1988. Two collections 
of scientific papers have been published from this work and can be found in Advances 

in Water Resources, Vol. 10, No. 3 (1987) and Advances in Water Resources, Vol. 12, 
Nos. 3 and 4 (Dee 1989). 

80. The fully nonlinear version of ADCIRC-ZDDI was applied to the grid and 

bathymetry shown in Figure 10. The grid consists of 990 nodes and 1,762 linear 

triangular elements. The model was forced by specifying 11 harmonic constituents for 

elevation (01, Ki, Mz, Nz, S2, Ka, MS4, MN4, M4, Ms, 2MSs) along the two open 
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model boundaries. Wind stress and tidal potential forcings were not used in the 
model runs. Model parameters were selected to match those used by previous 
investigators to allow the direct comparison of model results with field data and with 
previously published model results. The following parameter values were used in the 
model: r0 = 0.0002s-1, At = 36Os, Cf = 0.002322, f = 0.000113341s-1, and Eha = 0.0. 
The time integration coefficients in the GWCE were set to or = 0.35, or = 0.30, and 
03 = 0.35. 

81. ADCIRC-2DDI was run for the short-term test case suggested by Werner 
and Lynch (1988) covering the period from 0 hr on 15 March 1976 to 24 hr on 17 
March 1976. Werner and Lynch (1987) found that it was necessary to use a 
minimum bathymetric depth of 15 m throughout the model domain to avoid 
generating negative water depths during their simulations. ADCIRC-2DDI ran 
successfully using a minimum bathymetric depth as small as 10 m, although the 
simulated results were highly insensitive to this change at the 19 locations where 
observational data were available (see Figures 11 and 12). 

82. The first 47 hr 10 min of the simulation were used as a. transient start-up 
period. Figures 11 and 12 present comparisons between modeled time series and 
observed time series of free surface elevation (at 11 stations) and depth-averaged 
current speed and direction (at 8 stations) for the final 24 hr 50 min of the 
simulation. (The locations of the elevation and velocity stations are shown in 
Figure 10. The observed time series were actually reconstructed from 11 primary tidal 
constituents at each station. The tidal constituents correspond to those used to force 
the model open boundaries and were extracted from raw time series at each 

observation station using harmonic analysis.) In general, the model does a good job 
of simulating the observed results. Some of the differences can be attributed to local 
topographic and bathymetric effects and to the inherent problems associated with 
representing bottom stress in a depth-integrated model. Also, Werner and Lynch 
(1989) point out that the model results contain harmonic constituents, generated by 

nonlinear interactions within the domain, that are not included in the reconstructed 
observed time series. By filtering this energy out of the model results, they were able 

to reduce the average difference between the simulated and observed surface elevations 
by approximately 40 percent. The worst comparison occurs at the tidal elevation 
station at Christchurch and is at least partially due to the neglect of the channel 
between the Isle of Wight and the mainland (located approximately 25 km east of 
Christchurch) in the model grid. 

83. ADCIRC-2DDI was also run for the long-term test case suggested by 
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Werner and Lynch (1988) covering the 190-day period starting at 0 hr on 15 March 
1976. The first 5 days were discarded to allow for start-up transients and the 
remaining 185 days were harmonically analyzed using the least squares package of 
Foreman (1977). The amplitudes and phases of the primary surface elevation 
constituents from the ADCIRC simulation, from a simulation by Werner and Lynch 
(1989), and from the observed time series at the 11 elevation stations are compared in 

Table 3. The overall comparison between model results and observations is reasonable 
considering no effort has been made to calibrate the model by adjusting the bottom 
friction coefficient, as attempted by Baptista, Westerink, and Turner (1989). Some of 
the largest differences in phase occur at stations that are close to amphidromes. This 
is because a small displacement of an amphidrome’s position can result in a large 
change in the nearby phase values. Some of the largest relative differences in 
amplitude (i.e., percent difference between the simulated and observed amplitude) 
occur in the Ms constituents. Bottom friction is the primary nonlinear generating 

mechanism for this constituent, suggesting that this process is not captured very well 
by a depth-integrated model. 

84. Figure 13 presents co-tidal charts for the entire domain for 14 tidal 
constituents. The ADCIRC-2DDI results presented in Figure 13 and Table 3 compare 
very closely with those of Werner and Lynch (1989). This is expected since Werner 
and Lynch (1989) used a depth-integrated, finite element, GWCE-based model that is 
similar to ADCIRC-2DDI. The minor deviations between the models are due to 
ADCIRC’s use of a nonconservative formulation of the advective terms in the GWCE 
as well as slight differences in the discretizations of several of the terms. The close 
correspondence between the model results provides an excellent verification of the 

formulation and numerical discretization used in the external mode of ADCIRC. 
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a. O1 constituent 

K, Amplitude 

(meters) 
4 Phase 
(degrees) 

b. K1 constituent 

Figure 13. Cc-tidal charts for simulated constituents (Sheet 1 of 7) 
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Figure 13. (Sheet 2 of 7) 
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Figure 13. (Sheet 3 of 7) 
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Figure 13. (Sheet 4 of 7) 
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i. M4 constituent 

MN+ Amplitude 
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Figure 13. (Sheet 5 of 7) 
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PART IV: INTERNAL MODE SOLUTION 

Definition and Applicabilitv of a 3DL Model 

85. As discussed in Part 11, mode splitting replaces the direct solution of the 
three-dimensional governing equations with an “external mode” computation for free 

surface elevation (using the vertically integrated governing equations) and an “internal 
mode” computation for the vertical profile of velocity. It was noted in Part II that 
all of the physics contained in the three-dimensional governing equations are included 
in the vertically integrated equations if the bottom stress and the momentum 
dispersion terms are specified correctly. The simple parameterizations of bottom stress 
and momentum dispersion in terms of depth-averaged velocity (Equations 28 - 31) are 
physically correct only for the simplest flows (e.g., a logarithmic velocity profile over 
depth). Mode splitting replaces these simple parameterizations with the internal mode 
equations. Therefore, when the complete internal mode equations are solved, the 
bottom stress and momentum dispersion used in the vertically integrated equations are 
(in theory) completely consistent with the three-dimensional equations. 

86. While the external mode equations are tw+dimensional, the internal mode 
equations retain the spatial variation of velocity in three dimensions. Considerable 
computational savings can be realized if the advective terms and the horizontal 
momentum diffusion terms are dropped in the internal mode computations (Nihoul and 
Djenidi 1987; Davies 1988). This simplification eliminates all horizontal gradients from 
the internal mode equations, thereby reducing them to one-dimensional equations in 
space (over the vertical). When simplified internal mode equations are solved, the 

bottom stress and momentum dispersion are no longer completely consistent with the 

threedimensional equations. However, these approximations should be physically 
correct for flows in which the vertical distribution of momentum at each horizontal 
grid point is determined by a local balance between the surface and bottom stresses, 
vertical momentum diffusion, the Coriolis force, and the local inertia. (Clearly, this 
should encompass a much wider range of flows than parameterizations solely in terms 
of the depth-averaged velocity.) The required balance will exist when the rate of 
vertical momentum transport is much greater than the rate of horizontal momentum 
transport. Assuming horizontal momentum transport is dominated by advection, the 

rate of vertical momentum transport will be much greater than the rate of horizontal 

momentum transport in the three-dimensional governing equations if 

89 



Scaling this yields 

where E,,, U,, h,, and L, are a characteristic vertical eddy viscosity, horizontal 
velocity, water depth, and horizontal length scale, respectively. Dimensional arguments 

suggest E,, :: th,U, where < is a constant whose value for tidal and wind-driven 
flows typically ranges from 10-s to 10-a (Bowd.en, Fairmaim, and Huges 1959; Csanady 
1976; Fischer et al. 1979; Davies 1985). Therefore, the simplified internal mode 
equations should be an accurate approximation to the full internal mode equations 
provided 

2 >> 100 - 1,000 

Since coastal and shelf waters are usually characterized by large length-tc+depth 
scales, a model based on the simplilied internal mode equations should be widely 
applicable in these waters. 

87. The model based on the simplified internal mode equatio~ns will be called a 
three-dimensional local (3DL) model. This name emphasizes the fact that the 
simplified internal mode equations give values of bottom stress and momentum 
dispersion for the two-dimensional (external mode) equations that are not fully 
consistent with three-dimensional equations, but rather are based on a local 
approximation of the three-dimensional equations. 

Rationale for the DSS Techniaue 

88. Despite the savings gained by simplifying the internal mode equations in 
the 3DL model, the internal mode equations are difficult to solve numerically because 
of the high velocity gradients that characterize the water column near the bottom and 

surface boundaries and across strong density changes. Existing stateof-the-art 
circulation models use velocity as a dependent variable and therefore require a fine 
numerical discretization to resolve regions of rapid velocity change. Davies (1991) and 

Davies and Jones (1991) have examined the computational effort required to resolve a 
bottom boundary layer using a one-dimensional model through the vertical solved with 
finite differences and several coordinate transformation/grid stretching schemes. For 
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tidal flows having an eddy viscosity that is constant over the upper 80 percent of the 
water column and that varies linearly with distance from the bed over the bottom 20 
percent, Davies (1991) found that it was necessary to use a logarithmic or log-linear 
coordinate transformation and at least 20 grid cells to obtain convergence of the 

velocity solution. When the eddy viscosity was determined using a level 2-l/2 
turbulent closure, the most efficient solution was found to require a log-linear 
coordinate transformation and 50 - 100 grid cells over the vertical for both a 
turbulent kinetic energy transport equation and the momentum equation. 

89. Practical geophysical flows often have two or more regions containing sharp 

velocity gradients over the vertical. Because of the computational overhead in time 

and memory required to resolve these features, existing multi-dimensional circulation 
models almost always omit the near bottom region and use a slip boundary condition 
that expresses bottom stress as a quadratic function of near bottom velocity. This 
assumption is physically correct only when the velocity profile below the lowest grid 
point is logarithmic. An accurate treatment of surface and/or internal boundary 
layers requires a fine grid in the regions of these Ilayers. In many cases the required 
computational overhead makes it impractical to resolve these features in multi- 
dimensional computations. A survey of the recent literature suggests that only rarely 
have more than N 20 grid cells been used over the vertical in three-dimensional 
engineering or geophysical model applications. For example, Oey, Mellor, and Hires 
(1985) used 11 grid cells over the vertical in their model of the Hudson-Raritan 
Estuary. Clearly, such models have limited ability to resolve even one significantly 
sheared velocity gradient region. (Note: Davies and Jones (1990) have recently 
published results from a three-dimensional model of the northern European continental 

shelf using 45 grid cells over the depth. However, this model uses a coarse horizontal 

grid and omits the advective terms in both the internal and the external mode- 
governing equations.) 

90. It is WellLestablished from laboratory and field experiments, theoretical 

arguments, and conventional one-dimensional models that the time-averaged vertical 
shear stress varies rather smoothly through the water column, particularly near 
boundaries. Therefore, it should be possible to use a relatively coarse vertical 
discretization to solve numerically for the vertical shear stress, even in boundary 
layers. A novel technique has been developed that allows the vertical shear stress to 
be used in place of velocity as the dependent variable in the internal mode equations. 
Applications of the DSS technique using linearized equations of motion (discussed in 

detail below) have shown that it provides a highly efficient means of solving the 
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internal mode equations. This technique promises to be invaluable for modeling 
coastal and shelf circulation in which the bottom and surface boundary layers comprise 
a significant portion of the water column and for modeling processes that are critically 
dependent on boundary layer physics such as wave-current interaction, sediment 
transport, oil spill movement, ice floe movement, energy dissipation, physical-biological 
couplings, etc. 

Develonment and Testing of DSS Method No. 1 

91. Internal mode equations can be ge:nerated by subtracting the vertically 
integrated equations from the three-dimensional equations (Wang 1982; Sheng 1983; 
Davies 1985). Using the three-dimensional equations in the o coordinate system 
(Equations 19 - 21), the non-conservative vertically integrated momentum equations 
(Equations 25 and 26) assuming a constant density fluid, and neglecting advection 
and horizontal momentum diffusion terms, the resulting internal mode equations are 

2 - f$ = &-[(a-b)% - rsX + rt,x] (114) 

2+fti= &[(B-b)% - rsy + 5y 1 (115) 

92. Using the eddy viscosity relationships (Equation 34) to e:xpress rZr and rzY 
in terms of velocity and either the slip or the no-slip boundary condition (Equation 
10) at the bottom, Equations 114 and 115 can be cast entirely in terms of velocity. 
Numerical solutions can then be sought for the dependent variables, fi and $. This is 

the standard velocity solution (VS) approach. 
93. Alternatively, Equation 34 can be inverted to obtain expressions for 

velocity in terms of stress 

(116a) 

(116b) 

In Equation 116 the definitions of fi and v have been used and nonzero slip velocities 

ub and Vb have been included for generality. Relating ub and Vb to the bottom 

stresses, nbx aud nY, via the slip conditions 
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%X/PO = k ub = k(iib + U) 
r~,~/pc, = k Vb = k(+b + V) 

Equation 116 can be written as 

(117a) 
(117b) 

(118a) 

(118b) 

(For a n-lip boundary condition, the terms 3 and 3 do not appear in Equation 

118. The no-slip condition is approached as k+m.) Substituting Equation 118 into 
Equations 114 and 115 gives: 

b b 

nbx 1 = g - fv - f$ (119) 

b b 

-& [(a-b)% + QY] = g + f~ - 3 (120) 

Equations 119 and 120 have rzx and 7zY as dependent variables and will be called the 
DSS’ internal mode equations. (The superscript 1 is used to identify DSS method 

No. 1.) These equations are forced by the external mode solution (U, V, and H) and 
the applied surface stress. 

94. Equations 119 and 120 contain both integral and differential terms; 
therefore, they are well-suited for a spatial discretization in which T,, and 7zY are 
expressed in terms of assumed shape functions such as the spectral or finite element 
methods. Depending on the choice of the shape functions and the functional variation 
of E, over the depth, the velocity profile can be recovered from the stress profile by 
solving Equation 118 in closed form. This is an important convenience because it 
avoids the troublesome operation of numerically integrating the near-logarithmic 
singularity that occurs in Equation 118 when E, varies with distance from a 

boundary. The restrictions that a closed-form solution for Equation 118 impose on 

~zx, rzY, and E, are not severe. For example, T,,, rzY, and E, may be expressed in 
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terms of polynomials that span the vertical globally or in a piecewise manner. 
Polynomial variations of rzX and rzy are consistent with either the spectral method or 
the finite element method; for most practical problems, E, can be approximated as 
piecewise linear over the vertical (Furnes 1983; Davies 1987; Chu, Lieu, and Flenniken 
1989; Jenter and Madsen 1989). 

95. The effectiveness of the DSSr technique is evaluated using a simple test 
case consisting of flow generated by a specified surface stress aligned in the x-direction 
in a wide, straight channel of constant depth with no Coriolis force. An analytical 
solution can be found for the linear version of this problem and provides a benchmark 
for the numerical solutions. For convenience, tbe linear governing equations are 

repeated below: 

(121) 

(124) 

Equations 121 and 122 are the depth-integrated (external mode) contmuity and 
momentum equations; Equation 123 is the VS internal mode equation; Equation 124 is 
the DSS’ internal mode equation. Since there is no motion in the y-direction, the 
y-direction equations and the subscript “x” m the stress terms have been dropped. 

96. The Galerkin-spectral method, with shape functions consisting of Legendre 

polynomials (LPs) over the interval -1 < o < 1 is used to discretize the VS and the 
DSS’ internal mode equations. The mth order LP is denoted L, and can be computed 
from the recursion formulas 

L.,(u) = 1 

The first eight LPs are shown in Figure 14. Other properties of LPs of note are 
L,, z L,(l) = 1 
L,\, 5 L,(4) = (-1)’ 

J’Lo(u) du = 2 
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-i’L,( 0) du = 0 for all r 2 1 

It has been shown for wind-driven circulation that velocity solutions using Legendre 
and Chebyshev polynomials yield results of virtually identical accuracy, that these are 
highly superior to velocity solutions obtained using expansions of trigonometric 

functions, and that these are more accurate than velocity solutions computed with a 
second-order finite difference scheme having the same number of degrees of freedom 
(Davies and Owen 1979; Davies and Stephens 1.983). For further information on the 
use of spectral methods in three-dimensional circulation models, the interested reader 
is referred to an excellent review by Davies (1987). 

97. The Galerkinspectral discretization for the VS internal m.ode equation is 
obtained by multiplying Equation 123 by the weighting function L, a.nd integrating 

from -1 to 1, i.e., 
I 

$ L,iid+ 
I 

(L”, &(z) do = - ; [z - .E] I’& du 
-1 -1 -1 

Integrating the second term in Equation 125 by parts 

it j’Lm $j-&$f) da = ; [L., 2 - Lmb 2 - 1’2 2 dc] 
-1 -1 

and substituting this into Equation 125 yields: 

1 1 
; L,iido+; z&nd”=-h 

I I 
’ [F - p] I’Lm du 

-1 -1 -1 

+i [ 
L,,,, 2 - Lmb 2 1 

Using the definition of the LP, Equation 127 simplifies to 

o=o m=O 
1 

it I 
L, ii do + ; 1’2 2 do = ; [z - Lmb z] ml 1 

-1 -I 

Since LO(~) = 1, the operation that generates Equation 128 is equivalent to 

(125) 

(126) 

(127) 

integrating Equation 123 over the depth when m = 0. The identity in Equation 128 

occurs because Equation 123, by definition, has no depth-averaged component. 
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98. The final steps in applying the Galerkin-spectral discretization to the VS 
are to substitute Equation 34 for rz/pO in Equation 129 (noting that g = 2) and to 

expand iI as a series of LPs with time-varying coefficients, /&(t), i.e., 
A 

fi(u,t) : 1 /%x(t) -L(a) (130) 
n=, 

Because L, du = 0 for n > 1, the necessary co,ndition j’ii do = 0 is identically 

satisfied by the spectral solution by using only the n > 1 LP. The solution of 
Equation 131 requires a bottom boundary condition (Equation 117). After expanding 
II, this becomes 

N 

c 
“=, 

b,, Lnb = - u + $ (132) 

99. The Galerkinspectral discretization for the DSS’ is obtained by 
multiplying Equation 124 by the weighting function L,(o) and integrating from -1 to 
1, i.e., 

Integrating the stress derivative by parts changes E>quation 133 to 

034) 

Using the definition of the LP, Equation 134 simplifies to 
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o=o m=O (135) 
1 (T 1 

; & L. & dodo 
II I 

L.b 2 + o 
I 

;Z~&, 
I 

= “,?$ ml 1 (136) cl 
-1 -I -I 

The idqtity in Equation 135 occurs because Equation 136 has no depth-averaged 
component. 

100. The final step in applying the Galerkin-spectral method for the DSS’ is 

to expand r,/p, as a series of LPs with time-varying coefficients, on(t), i.e., 

(137) 

101. The bottom boundary condition was introduced into Equation 118 and 
subsequently into Equation 138. Therefore it does not generate an extra equation, as 

was the case for the VS. However, the stress expansion, Equation 137, does not 
automatically satisfy the condition that -1’” du = 0. Rather this must be enforced 

explicitly. Using Equation 118 and the definition of u, this requirement generates the 

additional equation 

Substituting the expansion for r,/p, into Equation 139 yields 

(140) 

102. The relative merit of the DSS’ versus the VS was evaluated by 

comparing solutions computed numerically with analytical solutions for the problem of 
winddriven circulation in a closed, rectangular channel aligned with the x-axis and 

having a constant bathymetric depth. This was done for a steady-state case, for a 

periodically varying wind stress, and for an instantaneously imposed wind stress. 
103. In each test case, E, was assumed to be linear over the depth as 

expressed by 

E”(u) = E,o(u+l+g,) (141) 
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where go : 22,/h is the dimensionless roughness height. It is well known from 

theoretical, laboratory, and field experiments that an eddy viscosity that increases 
linearly with distance from a solid boundary realistically reproduces the physics of the 

boundary layer near the boundary (Monin and Yaglom 1971; Schlichting 1979; Grant 
and Madsen 1986). Despite the fact that this does not hold over the entire depth, 
(e.g., it has been suggested that E, should also increase linearly with distance below 
the free surface (Jenter and Madsen 1989)), Equation 141 is used here because it 
generates a realistic bottom boundary layer and because it simplifies the analyses of 
model results by introducing only two parameters, E,, and un, into the problem. As 
is shown below, the presence of a velocity gradient region at the bottom is sufficient 
to illustrate the advantage of the DSS over the VS. In fact, the use of an eddy 
viscosity that does not also give a boundary layer at the free surface is a considerable 
advantage for the VS, since it eliminates the additional need to reproduce velocity 
gradients there. 

104. Assuming reasonable ranges for a0 of 0.1 to 10 cm, and for b of 1 to 
100 m, suggests values of g,, N 10-s to 10-Z. (The combination of z0 = :I0 cm and 
h = 1 m, which gives u0 N lo-i, is not considered realistic since z0 is ty:pically 
3 to 10 percent of the physical roughness height. :In this case the physical roughness 
would occupy the entire depth.) Assuming the slope of the variation of E, with a 

scales with Iit, (IIt 5 m ), then E,, N U+bh. If Ii*, varies over the range 0.1 to 
10 cm/s, E,, N 10-3 to 101 mz/s. 

105. Equations 131, 132, 138, and 140 show that the VS and DSSi require the 
specification of rs/po (which is the input forcing) and U. To eliminate the possibility 
that errors in the solution for U might affect the comparisons, U was obtained for 

each test case from an analytical solution of Equations 121 - 123. As a result, errors 
in the VS and DSSi over the vertical do not feed back into the solution for U as 

they would if the complete problem was solved numerically. 

106. In all of the results presented below, bottom stresses are obtained from 
the VS by using computed bottom slip velocities and the linear slip boundary 
condition (Equation 117). Comparisons indicated that this method gave more accurate 

values of bottom stress than those obtained by evaluating Equation 34 at D = -I. 
(A similar conclusion was reached by Gresho, Lee, and Sani (1987).) Velocities are 
obtained from the DSSi by solving Equation 118 analytically using the computed stress 
profiles. 
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107. At steady state, Equation 123 reduces to 

872. _ 7s - 7b 
az-2 

which has the analytical solution 

2 = u+l 
7. 

--y- + 9 (21 

where 

(142) 

(143) 

32, 
-1 +a,) %lp in(F) -1 

7s ;:- 1 + (2+(r,) Wln( 2)-;T 
(144) 

and K e kh/E,, is the nondimensional slip coefficient. The nondimensional solutions 
for velocity are 

045) 

108. The VS and DSS’ are obtained ,from Equations 131, 132, 138, and 140 by 
dropping the time derivatives, setting U = 0, and considering all other terms to be 
constant in time. 

109. Figure 15 presents a comparison of vertical profiles of horizontal velocity 
for several combinations of K and go computed from the analytical solution, the DSS’ 
using 2 LPs and the VS using various numbers of LPs. Equation 143 indicates that 

the analyt&l solution for stress varies linearly over the depth, regardless of the form 
of E,. This solution can be represented exactly by the DSS’ using only the n = 0 

and n = 1 LP; therefore the DSS’ and the analytical solution in Figure 15 are 
identical. Equation 146 indicates that the analytical solution for velocity has a 

logarithmic variation over the depth and consequently a potentially sharp gradient 
region near the bottom. In Figure 15a the combination of a small K (large amount 
of slip) and a large CX, minimizes the gradient region. Over most of the depth the 
velocity profile is nearly linear and therefore closely reproduced using a VS with 2 LP. 
However, approximately 5 LPs are required to capture the mild velocity gradient near 
the bed. In Figure 15b, the same K is used with u0 reduced by two orders of 
magnitude. This hs,s the effect of pushing the gradient region closer to the bottom 

(i.e., it is equivalent to increasing the depth by a factor of 100 for the same 
roughness) and therefore steepening the velocity gradient. Because the velocity profile 
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is nearly linear over much of the depth, it is reproduced well by the VS with 2 LPs. 
However, near the bed, approximately 10 LPs are required for the VS to capture the 
gradient region. As discussed below, this results in a poor prediction of bottom stress. 

110. In Figures 15c and 15d, a high value of K is used, resulting in essentially 
no slip at the bottom. For large go (Figure l!ic) a velocity expansion of 10 or more 
LPs is required to reproduce this profile. Reducing p,, by two orders of magnitude 

(Figure 15d) sharpens the profile further, and approximately 20 LPs are required to 
capture the velocity profile away from the boundary. Many more are required to 
represent the gradient region near the boundary. 

111. As noted above, an important reason for using a three-dimensional model 

in place of a two-dimensional model is the former’s improved represeutation of the 
bottom stress. However, since stress is proportional to the velocity gradient 
(Equation 34), or the bottom velocity (Equation 117), the bottom stress may still be 
represented poorly if the gradient region near the bottom is not resolved properly. To 
illustrate this problem, a comparison was made between the analytical bottom stress 
and computed bottom stresses from the DSS’ and the VS over the practical range of 
K and oO. The DSS’ reproduces bottom stress exactly using 2 LPs. On the other 
hand, Table 4 presents a summary of the number of LPs required for the computed 
bottom stress using the VS to come within 10 percent of the analytical bottom stress 
as a function of K and g,,. Clearly, it is computationally practical to use the VS 

only for large roughnesses and large amounts of slip, both of which tend to minimize 
the velocity gradient at the bottom. 

112. Although quite simple, the steadystate case demonstrates the relative 
ease with which a DSS can resolve a realistic boundary layer (i.e., no bottom slip and 
a linearly varying eddy viscosity) in a hydrodynamic model that explicitly includes the 
vertical dimension. In the following examples we evaluate how this highly desirable 
capability is affected by unsteady conditions. Only the no-slip case (K = 1,000) is 
considered. 

113. If a periodic surface stress is assumed of the form rs(t)/Po= (rs/Po)ei@t 

(where w is the forcing frequency and i 5 fl), solutions can be sought to 
Equations 121 - 123 that have the form U(t) = Ueiot, ii(o,t) = ii(o)ei*t, n(t)/Po= 
(ru/Po)eiot, and n(t) = rjeiot. (Note: rs/pO, U, ii(o), n/par and q are all complex 
variables; therefore they may be out of phase with each other.) Substituting these 
into Equations 121 - 123 transforms the linear hydrodynamic equations into 
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Table 4 
Steady-State Bottom Stresses Computed Using Velocity Exuansions 

00 

IO-2 

10-2 
10-2 

10-2 
10-a 

10-3 

10-3 

10” 

10-3 

10-3 

10-4 

10-4 

10-4 

10-4 

10-4 

10-s 
10-s 
10-5 

10-s 

10 -5 

K 

10-I 

100 
101 
102 

103 

10-I 
100 

10’ 
102 
103 

10-l 
100 
10’ 
102 
103 

10-l 

100 
10’ 

102 
103 

#LP 

3 0.100 
8 0.091 
9 0.099 

10 0.078 
10 0.078 

8 0.096 
21 0.098 
24 0.095 
24 0.098 
24 0.099 
22 0.100 
<40 0.192* 
540 0.242* 
<40 0.249* 
540 0.249* 

<40 0.174* 
<40 0.476* 
540 0.602* 
540 0.619* 
<40 0.620* 

* This is the minimum difference obtained using no more than 40 Legendre polynomials, 
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iwq + h $ = 0 (147) 

iwU=-g$j+&(rs-rb) (148) 

iti - @$Q & [* g] = & (Q ‘- 7s) (149) 

114. The procedure used to solve Equations 147 - 149 analytically, together 
with the linear slip boundary condition, has been presented previously (Lynch and 
Officer 1985; Lynch and Werner 1987) and is not repeated here. Rather, the solutions 
are given without derivation in Table 5 (Equations 150 - 163). 

115. Spectral approximations for the periodic case are generated by expressing 
/3”(t) = heimt and on(t) = Lyneiwt and substituting these as well as the periodic forms 

of u(t), rz(~,t)/Por rS(t)/PO, n(t)/p,, and U(t) into Equations 130 - 1.32, 137, 138, and 

(164) 

m _> 1 (165) 

(167) 

m 2 1 (168) 

(169) 

116. The periodic solution depends on th,e dimensionless parameters K and r0 
(as found for the steady-state solution), a dimensionless channel length L’, a 
dimensionless frequency 52, and the dimensionless position in the charmel x/L. L’ is 

the ratio of the channel length, L, to the wave length of a shallow-Walter wave having 
period w (Equation 154). s2 is the ratio of the time scale for momentum to be 
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Table 5 
Analvtical Solution for the Periodic Test Case* 

(150) 

(151) 

(l-exp(-XL’))exp(XL’f) - (l-exp(XL’))exp(-XL/t) 

exp( XL’) - exp(-XL’ ) I 

(152) 

(153) 

~(AI+B) 

“12 q A1[-1).& Q-1) uo 

[ B(A,+B) B = 1 
AI(U) g A4Gdl) - ~~(441) 
AZ(U) E ~,(+kl) - + iL2(-4 - P2(3[/4-1) - 2 /q-l)] 

B = i+)[~@) - 2 i2(-4 - h(+(-1) - 2 ii( 

p,(u) = ber[[R(u+l+u,)]v2] + i bei[[R(u+l+u,)]v2] 

~2(u) = ker[[R(u+l+u,)]~2] + i kei[[n(u+l+uO)]~2] 

(154) 

(155) 

(156) 

(157) 

(153) 

(159) 

(160) 

(1’31) 

(162) 

(163) 

*her, bei, kef, kei are zeroth order Kelvin functions, an overdot (‘) 5 a/au, 

an overbar ( ) 5 t !: do 
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transported through the water depth, ha/E z,,, and the forcing time scale, l/w, 

Equation 155. Assuming ranges for w of lO-.s se@ to 10-s set-1, L of 1 km to 

10s km, and h and Ut as given previously, suggests L’ N 10-5 to :LOa and n N 10-4 to 

102. In all cases results are presented for x/L = 0.5, as these are representative of 

the behavior throughout the rest of the channel. 
117. Figures 16 and 17 present magnitude and phase portraits of the velocity 

structure for K = 1,000, L’ = 1, and four combinations of u0 and s2. For the case 
R = 10-1, momentum is transported through the depth in only a fraction of the 

forcing period, Figures 16a and 16b and 17a and 17b show that the velocity 
magnitude and phase obtained from the DSS’ using 2 LPs are virtually identical to 
the analytical solution; therefore, the stress variation is very close to linear over the 
depth. This linear stress variation suggests that the momentum balance over the 
depth is nearly at steady state and is consistent with the low value of R. Since 
steady state is approached as R + 0, the DSS’ using two LPs gives a highly accurate 
solution for R < 10-I as well. The VS is able to capture the phase change through 
the water column with a comparable number of LP to the DSS’. However, as was 
the case at steady state, for r~,, = 10e2, approximately 10 LPs are Irequired to 
reproduce the velocity magnitude with an accuracy comparable to the DSS’ using 
2 LPs. For u0 = 10e4, more than 20 LPs are required. 

118. For the case R = 10, the vertical momentum balance is no longer near 
steady state; consequently the DSS’ requires more than 2 LPs to capture the vertical 
stress variation. Figures 16c and 16d and 17c and 17d suggest that approximately 
4 LPs may be needed by the DSS’. The VS, however, requires at least 10 LPs for 
u,, = lo“, and more than 20 LPs for g,, = 70m4. 

119. Figures 18 and 19 compare the amplitude and phase behavior of the 

analytical solution for bottom stress with solutions obtained using the DSS’ and VS. 

These runs were made using a single value of o,, = 10e3, but varying 0 and L’. The 
104 change in L’ has minimal effect in these pictures, indicating that the number of 

LPs required for the DSS’ or the VS to converge to the analytical !solution is only 
very weakly dependent on L’. For 0 < 1, the DSS’ with 2 LPs is nearly identi.cal to 
the analytical solution, while for larger n the number of LPs required by the DSSL 

increases to as many as 7 for Q = 102. Considering the fact that comparable results 
using the VS require the use of more than 20 LPs, the DSS’ is computationally quite 
superior to the VS for all 0. 

120. Although the Coriolis force was omitted from these test cases, the results 

can be used to infer whether a DSS will be equally effective when t:he Coriolis force is 
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included. The counterparts to Equation 123 for the case in which Coriolis is :included 

are 

1,t has been shown (Lynch and Officer 1985) that the linear combinations of fi and $ 

transform Equations 170 and 171 into 

121. Equations 172 and 173 show that the vertical structures of C+ and G- are 
uncoupled and that each is analogous to the strimture of ii in the absence of the 
Coriolis force, except that ir+ is forced by the frequency w + f and ir- is forced by the 
frequency w - f: Therefore the vertical structures of ?+ and ?- will depend on the 
dimensionless frequencies D+ z D + Yand R- : R - <P; respectively, where 
9: f hs/E,,. At mid-latitudes, f N 10-d set-1, giving the range of 3~ 10-s to 101. 

This yields values for R+ and R- in the same range as R; consequently the results 
shown in Figures 16-19 are also indicative of the performance of the DSS’ and the VS 

when the Coriolis force is included in the governmg equations. 
122. Analytical solutions can be obtained for the test problem for a transient 

forcing by decomposing the forcing into its Fourier components, using the periodic 

solutions presented above for each Fourier component and superimposing the rei;ulting 

periodic solutions. In this section an illustrative set of results for bottom stress are 

presented for the often-used problem of an instantaneously imposed wind on an 
initially quiescent channel. Representative values of L = 100 km, h = 50 m, 
o0 = 0.01, and E,,= 0.5 ms/s are used. 

123. An instantaneously imposed forcing cannot be represented exactly by a 

finite Fourier series; however, 
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gives an approximation to a square wave of period T, as shown in Figure 20. By 

selecting T to be larger than the time required for the basin to reach steady state 

and considering only the period 0 5 t/T < 1, a reasonable representation of an 

instantaneously imposed wind can be obtained and used to develop an approximate 

analytical solution. Sensitivity analyses indicated tha.t when 50 or more terms were 

used in Equation 174, minimal change occurred in the analytical solmion of the basin 

response and any change that did occur was limited to times very close to zero (i.e., 

on the order of t/T < 1 percent). Seventy-five terms (N=74) were used in Equation 

174 for the solution shown in Figure 20 and the runs presented below. 

124. The VS and the DSS’ for the transient test case were obtained by 

discretizing Equations 123 and 124 in time using a Crank-Nicholson scheme. As 

discussed above, the analytical solution for U was used to force these equations, 

thereby eliminating any feedback of error from (*he vertical representation in,to U. 

Figure 21 presents a comparison between bottom stresses obtained analytically and 

from the VS and the DSS’. The DSS’ with 3 ILPs is quite close to t,he analytical 

solution except very near t = 0 (due primarily to the overshoot in th.e forcing in 

Figure 20). Conversely, 15 or more LPs are required for the VS to attain comparable 

accuracy. We note that this test case uses go at the upper limit of .the practical 

range and therefore is the easiest case for the VS to capture. For smaller values of 

go, the transient ,performance of the VS becomes even poorer as suggested by the 

steadystate results in Table 4. 

125. The results of this section suggest that shear stress can be a highly 

efficient substitute for velocity as the dependent variable in the internal mode 

equations. For this to be accomplished, it is only necessary that the shear stress and 

the vertical gradient of velocity be linked via an eddy viscosit,y relationship. 

Depending on the choice of shape functions and the lunctional variation of eddy 

viscosity over the depth, the velocity profile can be recovered from the stress profile 

in closed form. LJnder these conditions the difficulties associated with numerically 

integrating a near.-logarithmic singularity are avoided. Most practical problems can be 

solved subject to this restriction by allowing a global or piecewise polynomial variation 

of rz and a piecewise linear variation of E,. 

126. One disadvantage with the DSS’ is that it yields a fully populated matrix 

on the left side of the discretized equations that must be refo:rmed, decomposed, and 

solved at every time step if a time-varying eddy viscosity is used. This requires N N3 

operations to solve for stress and N Ns operations to extract velocity (musing 

IEquation llg), where N is the number of Ll’s that are used. Although often only a 
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few LPs are required for an accurate solution, as N reaches N 10, the computational 
attractiveness of the DSS’ rapidly diminishes in comparison to a VS that only requires 
the solution of a banded matrix (e.g., Lynch and Werner 1991). Part of the reason 

for the fully populated matrix is due to the spectral method’s use of globally, ra,ther 
than locally, defined functions. If Equation 124 is discretized using the Gnite element 

method with linear elements, the left-side matrix is the sum of a triangular plus a 
tri-diagonal matrix. This requires N Ma operations to solve, where M is the number 
of nodes used over the depth. It can be shown that the triangular part of the matrix 
arises because of the integral term in Equation 124. 

Development and Testing ofmS Method Nu 

127. The solution of a fully populated or near-triangular matrix system c,an be 

avoided by reformulating the DSS internal mode equations to eliminate integral terms 
from the left side. This can be accomplished by generating internal modle equations 
by taking the vertical derivative of the three-dimensional momentum equations rather 
than by subtracting the vertically integrated equations from the three-dimensional 
equations. The use of internal mode,equations derived by taking the vertical 
derivative of the three-dimensional equations has been reported by Tee (11979). 
Although this report focuses primarily on the simplified internal mode equations for a 
constant-density fluid, the derivation of the full internal mode equations is presented 
below for completeness. 

128. Differentiating the u-coordinate horizontal momentum equations 
(Equations 19 and 20) with respect to c‘, and substiituting Equation 21 for +/au 
gives 

(Note, this is illustrated for the x-momentum equation only. The y-momentum 
equation follows directly.) 
Using the eddy viscosity relationship for r zx and rzzy (Equation 34) the vertical 
gradient of velocity can be expressed in terms of the shear stress as 
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Substituting Equation 176 and the expansions 

u g&g) + g 2 = gi+g) 

+@=gjdv~l-~~ 

into Equation I,75 gives: 

-&$g&; + 
[ 1 am ~*~&g&+$p+&$ (177) 

Using the additional expansions 

&[&qjg] = A; &$I - &!@$ + fg + $+I 

ct lq& [ 1 = &$& g&y + &J&l, g 
g.&$q& [ 3 = I* g&y + &)K gj$ 
gF$g&j = & $jd$? + &z $2 
Equation 177 can be written in final form as 

& ;,x [ -J -. $I$ - Lgg AT& = cx _ k!$[~~: _ gs] 

where cx represents the contribution of the nonlinear advective terms 

cx = - “&[& - &[&] - w$&$ + p& g -- g$ g 

Applying the same transformation to the y-momentum equa.tion gives 

&[gJ.L] + gg - IgIg z&Y = Cy _ k$qY - .g 

where 

(178) 

(179) 

(180) 

C Y = - &[&] - v$[&] - “g$i] + 6% g -- i7; g: (181) 

Introducing the complex shear stress 7z q 7zX + ir,, (where i z R), 

(176b) 
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Equations 178 and 180 can be combined into a singl~e complex equation 

c+b+n? 

whcrc 

c s c, + icy (183a) 

(183b) 

(183~) 

Because both 7z and E, may vary in time, the discretization. of Equation 182 in time 

may be facilit,ated by expanding the leading term as: 

Substituting Equation 184 into Equation 182 and! multiplying both sides by E, gives 

129. For the 3DL model, the baroclinic, advective, and horizorrtaf turbulent 

momentum terms are assumed to be equal to zero. This leaves 

or 

as simplified DSS2 internal mode equations. (The superscript 2 is used, to iden.tify 

DSS method No. 2.) We note that for an eddy viscosity that is constant in t:ime, 

Equations 18Ga and 186b have the form of compllex diffusion, equations for stress. 

This provides a physical interpretation for the internal mode equation; i.e, it describes 

the turbulent diffusion of stress through the water column. 

130. Because of the second derivative term in stress in Equations 186a and 

186b, two boundary conditions are needed to solve either equation over the vertical. 

The free surface boundary condition is 

T~/P, = rslp, at u=a (137) 

where rs is the specified surface stress. A second boundary condition can be 
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generated by requiring the depth average of the internal mode velocity to match the 
external mode depth-averaged velocity. From Equation 118 this becomes 

3 + Aa 
aa 

II 
k duda = U + iV (188) 

bb 

131. To avoid the fully populated matrices generated by the Galerkin-spectral 
method, the DSSZ uses the Galerkin-finite element method to discretize the internal 
mode equation over the vertical. rz/pO is expanded over M-l depth :intervals using 
depth-dependent, locally defined basis functions F,(u) and complex coefficients rr(x,y,t) 

(1891 

The Galerkin-finite element forms of Equations 186a and 1861) are obtained by 

substituting Equation 189 for r,/p,, multiplying each equation by F,(17) and 
integrating with respect to g over the interval f,rom a to b: 

and 
n = 1, . . ..M (190a) 

n = 1, . ..M (19Ob) 

132. Linear chapeau functions will be used for F,(g). The ten.dency observed 
in the DSS’ results for stress to become linear over the depth for Q < 1 suggests that 

these functions should give a good representation of stress if the element size is 
selected so that Re N 1. (P is identical to R except it is defined usi,ng the element 
size rather than the total depth.) However, Equations 190a and 190b require a C1 
interpolating basis. To lower this requirement to Co, we integrate by parts: 

(191a) 
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b 

(19lb) 

for Equations 190a and 19Ob, respectively. 
133. Using linear basis functions, when n = 1 and n = M, the first two terms 

in Equations 191a and 191b exactly cancel the integral terms in these equations 

making the total diffusion terms equal to zero. However, when 2 < n < M-l, the 

first two terms in Equations 19la and 19lb are ,identicaIly zero. Therefore, for 
2 < n < M-l, Equations 191a and 191b can be substituted into Equations 19Oa and 
190b to give physically meaningful equations: 

n = 2, . . ..M-1 (192a) 

and 

n = 2, . ..M-1 (192b) 

134. The boundary conditions are used to supplement Equations 192a and 192b 
when n = 1 or n = M. Equation 187 is used in place of the n = M equation: 

Re{TJ = 7sxlPo and I.Ir,~ = Ts,lPo 

In place of the n = 1 equation, Equation 188 gives 

(193) 

13.5. Velocity is recovered from stress by solving the discretized version of 

Equation 118 

u + iv = 

136. Equations 192a or 192b and 193 form a tri-diagonal system; Equation 194 

adds a fully populated bottom row to this system.. However, only a few extra 
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computations are required to reduce the system to tri-dia.gonal. Therefore, the 

number of operations required to obtain a solution for stress at each time step scales 

with M. Since r,/p, is piece wise linear over the depth, the integrals in Equation 

195 can be evaluated analytically for many functional forms of E,. For most practical 

model applications, it can be assumed that E, Ihas a, piece wise linear variation with 

depth (Furncs 1963; Chu, Liou, and Flennikcn 11~989; <Ienter and Madsen 1989). This 

is physically correct near boundaries and makes the a,nalytical solution of the stress 

integrals particuhtrly simple. Using this fun~ctional form for I~,, the number of 

operations required to analytically extract velocity from stress also scales with M. 

137. An initial evaluation of the DSSz has been made using the same test 

problems solved for the DSSi and the VS. For these t&s f = 0, rY:=, 0, a,nd E, is 

constant in time. Therefore, ‘Equations 192 - 195 arc simplified to: 

n =: 2, . ..M--1 (196a) 

‘n = 2, . ..M-1 (196b) 

n=M (197) 

n= 1 (198) 

(199) 

138. To distinguish between the two internal mode equations, results are 

designated as DSS: or DSS2 depending on whctlner they are based on Equation 196a 

or Equation 196b, respectively. In all of the results, a specified number of equalsized 

elements was used over the vertical. It may be possible to improve the efficiency of 

the DSS2 furt,her using elements that are not equally sized. However, this option has 

not yet been investigated completely. 

139. In the steady-state test case, thee si,ress distribution is lin’ear over the 

depth (Equation 143); therefore, both the DSS: and the DSSZ give the exact solution 

using one element over the vertical. The number of degrees of freedom (NDF) in the 
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fimte clement solution, (i.e., the number of simultameous equations t1hat must be 

solved) is equal to the number of nodes used in the discretization (number of nodes = 

1 -1 number of elements). The NDF in the spectral solution ins equal to the number 

of LPs used in the discretization. In both the DS;Sl method and1 the DSSa method, 

the exact steadystat,e solution is obtained using two degrees of ifreedom. 

140. Results from the periodic test case are shown in Figures 22 - 26. When 

R ;< ‘1, the DSSa is nearly exact using one finite element (two degrees of freedom) 

over the depth, Figures 22a and 22b, 23a and 23b, 24a and 24b, and 25a and. 2!ib. 

For R > 1, more than one finite element is required over the ,vertical for either DSSs 

to converge to the analytical solution (Figures 22~ and 22d, 23c and 23d, 24c an’d 

24d, and 25c and 25d). Comparing these results to the DSSi results ind:icates that 

both DSS2 methods require more degrees of freedom than the DSSi method to reach 

the same level of convergence. The bottom stress plots presented in Figure 26 

demonstrate the properties of the DSSz method ,further. Tn part,icular, they indicate 

that the DSSa is quite effective in the range R N 10 or less. It may be possible to 

extend this range to higher values of i1 if an unequally spaced finite element grid is 

used over the depth. 

141. A time history of bottom stress for the transient test case is shown in 

Figure 27. Comparing this to Figure 21a indicates that both DSS2 methods require 

four degrees of freedom to give a solution that is a,:pproximately equivalent to the 

DSSi using three degrees of freedom. 

142. Tn c,onclusion, new internal mode equations have been developed that 

allow shear stress to be used as the dependent variable in the internal mode solution 

and that yield a nearly tridiagonal matrix system. While bot1h DSSa require mo’re 

degrees of freedom than the DSSi method to obtain comparable results for R :> 1, 

(due to the use of linear finite elements in the DSSs versus spectral functions in the 

DSSi), the matrix structure of the DSS2 matrices makes this method much more 

efficient than the DSSi. 

hlementation of Wave-Current Interaction in a D.8 Model -_ 

143. It is often observed in lakes, coastal waters, and shelf waters that near 

the bottom the orbital velocities associated with surface waves are as large as or 

larger than the mean current velocity. In such cases the surfacze waves have a 

significant effect on the bottom stress and the current profile. Several investigato:rs 

have developed theoretical models to account for this wave-current interaction. To 

121 



b 

1 
I 

i 
U

(U
) E

m
 

2 

7.
/M

 

-1
 6,

 
1 

-1
 [, 

,J
, 

0 
‘-’

 
Iu

(u
)E

zo
 

0.
2 

0 
‘.’

 
Iu

(u
)E

zo
 / 

0.
2 

i 
7.

/p
h 

/ 
‘G

/‘p
h 

Fi
gu

re
 2

2.
 

V
er

tic
al

 
pr

of
ile

s 
of

 h
or

iz
on

ta
l 

ve
lo

ci
ty

 
m

ag
ni

tu
de

 f
or

 t
he

 p
er

io
di

c 
te

st
 c

as
e 

us
in

g 
th

e 
D

S
S

: 



123 





125 



i 
0 0% 
.- 7 .- .- 
11~ II II II 

cccc 

( : j 1 

7 
0 0% -.---- 
II II II II 

c <I: c c: 

1 ; i 1 

12F 



127 



thoroughly assess the usefulness of the DSS approach, the effort required to implement 

the Grant and Madsen (1979) model (GM model) with a DSS of the internal mode 

equations has been considered. The GM model assumes thal. the mea.n current 

velocity can be determined as follows: 

a. inside the wave boundary layer, z < 6,, 

Ev = x. lU,cwl z Pw 

IU*cwl = j!jpc + TwIYZ (201) 
a no-slip boundary condition is applied at z = so, where z0 is the 
physical bottom roughness 

b. outside the wave boundary layer, z > 6, 

Ev = fi IU*cI z (202) 

IU*,l = ;oITc:/1’2 (203) 

a noslip boundary condition is applied at z = sOa, where z,, is an 
apparent bottom roughness experienced by the current due to the 
wave-current interaction. 

In these relations, n = 0.4 is the Von Karman constant, rc is the bottom stress due 

to the current alone, 7w is the maximum wav&nduced bottom stress during a wave 

cycle, and 6, is the thickness of the wave boundary layer. 

144. ‘The GM model can be included in a DSS of the internal mode equations 

as follows. 

a. Estimate z,, and (U,,:I based on values ai the previ,ous time step. 

b. Calculate E, and use the DSS model to predict 7,:. 

c. Solve Equation 201 for IU,,,I using rc from the previous step and 

rW from Equation 53 in Grant and Madsen (1979). Since rW is a 
,function of U,,:,, Equation 201 must be solved iteratively. 

d. Determine 
(1979). 

zoa using Equations 46 and 49 in Grant and Madsen 

e. Recalculate E, using the new rc. IJse this and the new value of zoa 
in the DSS model to predict 7~. Go to step c. and iterate until rc 
converges. 

145. Because two levels of iterations are required to implement the wave- 

current interaction, it may be computationally infeasible to use this scheme in 
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practical model applications. It may be possible to simplify this procedure in two 

ways in the proposed model. First, rather than iterate as described in step is., zaa 

can be calculated explicitly in time based only on results from the previous time step. 

This should introduce little error into the solution if the time step is small enough 

that changes in zoa and rC are relatively small. Second, foll,owing the suggestion of 

Spaulding and Isaj (1987), ra can be determined by neglecting the effect of the 

current on the wave within the wave boundary layer. l,n this case 

Tw/P = 0.5 fw IUbI Ub (204) 

where f, is the wave friction factor (Jonsson and Garlsen 1976) and Ub is the 

maximum bottom wave orbital velocity. For fully rough, turbulent flow,, fW can be 

determined from 

1 
+ 

I 
-- = - 0.12 4&- log,, 
4Jl-Y 

log,, 2 

where Au is the bottom excursion amplitude of the wave and k, is the Nikuradse 

equivalent sand roughness of the bottom (typically z0 =:: k,/30). 

146. The brief outline presented above suggests that the GM wave+xrrent 

interactio,n can easily~ be included in the DSS model. 1:n fact, if the implementation 

procedure outlined above for the DSS is compared with that described in Grant and 

Madsen (1979) for a standard VS, it is evident that the DSS simplifies the use of the 

GM model by eliminating the complications introduced ‘by a quadratic sl:ip bottom 

boundary condit,ion. 
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PART V: SUMMARY AND CONCLUSIONS 

14’4. This report documents the theory and methodology behind the ADCIRC 

(Advanced Circulation) model’s 2D’DI (2+limensional, depth-integrated) option and the 

3DL (3%dimensional, local internal mode equation) option. ADCIRC is based on the 

three-dimensional Reynold’s equations simplified using the hydrostatic pressure and the 

Boussinesq approximations,. Prior to their solution, the three-dimen.sional equations 

are separated into a set of external mode equations (the two-dimensional, vertically 

integrated equations) and a set of internal mode equations. 

148. The external mode equations can be solved by themselves (thee 2:DDI 

option) for depth-averaged velocity and freesurface elevation by parameterining 

bottom stress and momentum dispersion in te,rms of the depth-averaged velocity. Key 

features of the external mode solution are the use of a generalized wave-continuity 

equation (GWCE) formulation and the Galerkin-finite element (FE) method i:n space 

using triangular or quadrilateral elements. The FE method provides; maximum grid 

flexibility and allows highl;y efficient numerical1 solutions to be obtained using model 

domains that include complicated bathymetries and shoreline geomet,ries that also 

stretch considerable distances offshore to implement open-water boundary co:nditions. 

Detailed analyses and testing of ADCIRC-.2DDI have shown that it has good stability 

characteristics, generates no spurious artificial modes, has minimal inherent numerical 

damping, and efficiently separates the external mode equations into amall systems of 

algebraic equations with time-independent matrices. Applications of the 

ADCIRC-2DDI model to the English Channel and southern North Sea, the Gulf of 

Mexico, Masonboro Inlet, and the New York Bight have shown that it is capable of 

running month to year-long simulations while providing detailed intra-tidal 

computations. 

149. In stratified flows, Ekman layers, wind-driven flows in enclosed or semi-, 

enclosed basins, or flows affected by wave-current interaction in the boundary layer, it 

is generally impossible to parameterize bottom stress and momentum dispersion in 

terms of depth-averaged velocity. l1n such cases, it is necessary to s,olve the internal 

mode equations for the vertical variation of horizontal velocity and use this to 

evaluate the bottom stress and momentum dispersion terms in the external mode 

equation. Due to the shallow water depths that characterize coastal and shelf 

settings, the internal mode equations can often be simplified by dropping the 

horizontal gradient terms. This gives internal mode equations that express the vertical 

distribution of momentum at any horizontal position as a local balance between the 
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surface and bottom stresses, vertical momentum diffusion, the Coriolis force, and local 

inertia. The 3DL model option is formulated using the simplified, local internal mode 

equations. Existing numerical solutions of full or simplified internal mode equations 

use velocity as the dependent variable. Therefore, it is necessary to use a fine 

numerical discretization to resolve the sharp vertical gradients of velocity that occur 

near the bottom boundary and in winddriven flows near the surface boundary. 

During the course of the ADCIRC-3DL model development, a novel teclmique was 

discovered that replaces velocity with shear stress as the dependent varkble in the 

internal mode equations. The resulting direct stress solution (DSS) allows physically 

realistic boundary layers to be explicitly included in a three-dimensional model. 

Detailed testing of the DSS method has demonstral;ed its considerable advantage over 

standard velocity solutions and has led to an optimized DSS formulation. This 

treatment of the internal mode equations should be invaluable for modeling coastal 

and shelf circulation in which the bottom and surface boundary l.ayers comprise a 

significant portion of the water column and for modeling processes that are critically 

dependent on boundary layer physics such as wavecurrent interaction, sediment 

transport, oil spill movement, ice floe mo,vement, e:uergy dissipation, physical-biological 

couplings, etc. 

150. Considerable effort has gone into the development of ADCIR,C to produce 

a model that has simultaneous regional/local capabi,lities, as well as very high levels of 

accuracy and efficiency. This has been achieved by combining extreme grid flexibility 

with optimized formulations of the governing equations and numerical algorithms. 

Together, these allow ADCIRC to run with improved physical re<alism and a 

significant reduction in the computational cost of most presently existing circulation 

models. 
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